Two and Three Bond ¹³C–¹³C Spin Coupling Constants in Adamantane Derivatives

By STEFAN BERGER* and KLAUS-PETER ZELLER*

(Fachbereich Chemie der Universität D-355 Marburg, Lahnberge and Institut für Organische Chemie der Universität D-74 Tübingen, Auf der Morgenstelle, West Germany)

Summary The $^{13}C_{-13}C$ spin coupling constants in six adamantane derivatives labelled and substituted at C-2 have been measured and interpreted in terms of their conformational dependence.

ALTHOUGH the conformational dependence of $^{13}C^{-13}C$ geminal and vicinal coupling constants has been calculated recently,¹ the literature is lacking in experimental examples where these coupling constants were measured without the possibility of conformational¹ or rotational² averaging. In aromatic systems π interaction seems to be important for the coupling constant transmission;³ the applicability of a Karplus type⁴ equation is questionable¹ for aliphatic systems.

Therefore we have synthesized a series of 2-adamantane derivatives (1) where a ¹³C label was incorporated at the α -carbon atom and was thus directly a part of the rigid tricyclic system.⁵ The chemical shifts of some of the compounds are already reported in the literature;^{2,6} our assignments (Table) are in agreement with these findings. Although isochronism has been reported for the δ_{anti} and

		¹³ C ¹³ C Spin coupling constants ^a and chemical shifts ^b in (1)						
		α	β	γ_{syn}	Yanti	δ_{syn}	δ_{anti}	ε
(1 a)	$J \atop \delta$	218.2	$35 \cdot 9 \\ 47 \cdot 0$	$1 \cdot 1$ 39·3		$2 \cdot 0$ $27 \cdot 5$		${<}0{\cdot}5$ 36{\cdot}4
(1b)	$J \atop \delta$	74.5	$34.5 \\ 34.6$	$1 \cdot 8 \\ 31 \cdot 0$	0·7 36·6	$1.7 \\ 27.6$	$1 \cdot 3 \\ 27 \cdot 1$	${<}0{\cdot}5\ {37{\cdot}6}$
(1c)	$J \atop \delta$	59.5	$33 \cdot 9 \\ 35 \cdot 1$	$1.5 \\ 30.8$	${<}0{\cdot}5 \\ {37{\cdot}8}$	$rac{1\cdot 6}{27\cdot 8}$	$1 \cdot 3 \\ 27 \cdot 4$	${<}0.5\ {f 38.0}$
(1d)°	$J \atop \delta$	57.0	31.0 31.3	1·3 30·7	${<}0{\cdot}5\ {37{\cdot}3}$	$1 \cdot 6$ $27 \cdot 6$	1·5 27· 4	${<}0.5\ {f 37.6}$
(1e) ^d	${}^J_\delta$	53.0	$33 \cdot 3 \\ 32 \cdot 0$	$1 \cdot 5 \\ 32 \cdot 2$	${<}0{\cdot}5 \\ {37{\cdot}2}$	$1 \cdot 4 \\ 27 \cdot 2$	${<}0.5 \\ {27.1}$	${<}0{\cdot}5 \\ {f 37{\cdot}6}$
(1f) e	${}^J_\delta$	49.5	$32 \cdot 1 \\ 29 \cdot 5$	$1 \cdot 2 \\ 33 \cdot 6$	${<}0{\cdot}5 \\ {\bf 38}{\cdot}1$	$1 \cdot 4 \mathrm{f}$ 27 \cdot 5	${<}0{\cdot}5{ m f}\ {27{\cdot}5}$	${<}0{\cdot}5\ {37{\cdot}4}$

TABLE

^a Given in Hz, accuracy ± 0.25 Hz, measured with a Varian XL-100-15 spectrometer. ^b δ p.p.m. relative to Me₄Si in CDCl₃ given for the unlabelled compounds. ^c Measured in D₂O relative to Me₃SiCD₂CD₂CO₂Na (TSP) and calculated from the equation δ (TSP) – δ (Me₄Si) = 1.7 p.p.m. ^d δ _{Ph} 135.4, 131.3, 128.6, and 126.8; δ _{C=0} 166.7 p.p.m. ^e δ _{C=0} 180.9 p.p.m.; ¹J_{CC} 54.4 Hz. ^f Assignment for the coupled carbon atom tentative.

 δ_{syn} carbon atoms,⁶ we have been able to resolve these resonances. The assignments of these lines follow the result of a lanthanide shift experiment for (1b). The carbon atom with a larger bound shift is assigned to the δ_{syn} carbon atom. This assignment is in accordance with reported δ effects in cyclohexyl systems.⁷†

The results given in the Table show that there are significant conformational dependences for ${}^{2}J_{\rm CC}$ and ${}^{3}J_{\rm CC}$ whereas ${}^{1}J_{cc}$ does not vary substantially. An interesting effect is seen for ${}^{2}J_{CC}$ in (1b)—(1f), where the geminal coupling constant to the γ_{anti} carbon atom can be resolved only in (1b). The effect is less apparent in the three-bond

couplings to the δ carbon atoms: ${}^{3}J_{cc}$ to the δ_{syn} carbon atoms are, in all cases, larger than to the δ_{anti} carbon atoms. Furthermore all ¹³C-¹³C coupling constants in this system seem to be dependent on the substituent. The less the substituent is disturbing the adamantane system as judged from the chemical shift value of the α carbon atom the smaller are the coupling constants. These findings indicate that directional effects of bond polarization⁸ may play an important role in the scalar coupling mechanisms of aliphatic systems.

(Received, 6th May 1976; Com. 502.)

† The same assignment has recently been reported by H. Duddeck and W. Dietrich, Tetrahedron Letters, 1975, 2925.

- ¹ M. Barfield, I. Burfitt, and D. Doddrell, *J. Amer. Chem. Soc.*, 1975, 97, 2631. ² J. L. Marshall and D. E. Miiller, *J. Amer. Chem. Soc.*, 1973, 95, 8305. ³ J. L. Marshall, A. M. Ihrig and D. E. Miiller, *J. Magnetic Resonance*, 1974, 16, 439; S. Berger and K. P. Zeller, *J.C.S. Chem. Comm.*, ¹ J. D. Matshau, A. M. Karpins, J. M. Karpins, J. 1975, 423.
 ⁴ M. Karpins, J. Chem. Phys., 1959, 30, 11.
 ⁵ K. P. Zeller, Z. Naturforsch., 1976, 31b, 586.
 ⁶ T. Pehk, E. Lippmaa, V. V. Sevostjanova, M. M. Kraynschkin, and A. T. Tarasova, Org. Magnetic Resonance, 1971, 3, 783.
 ⁷ T. Pehk and F. Lippmaa, Org. Magnetic Resonance, 1971, 3, 679.
 ⁷ T. Pehk and F. Lippmaa, Org. Magnetic Resonance, 1971, 3, 679.

 - ⁷ T. Pehk and E. Lippmaa, Org. Magnetic Resonance, 1971, 3, 679.
 ⁸ M. Barfield, A. M. Dean, C. J. Fallick, R. J. Spear, S. Sternhell, and P. W. Westerman, J. Amer. Chem. Soc., 1975, 97, 1482.