Pronounced Catalytic Activity of Specially Prepared MoO₃-TiO₂ for Reduction of Nitrous Oxide with Hydrogen

By Susumu Okazaki, Naoki Ohsuka,

(Department of Industrial Chemistry, Faculty of Technology, Ibaragi University, Hitachi-shi 316, Japan)

and TOKIO IIZUKA and KOZO TANABE*

(Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060, Japan)

Summary Although an MoO_3-TiO_2 (α) catalyst prepared from orthotitanic acid showed only 2.5% conversion in the reduction of nitrous oxide with hydrogen at 250 °C, an MoO_3-TiO_2 (β) catalyst prepared from metatitanic acid showed 100% conversion, and its activity was markedly higher than that of MoO_3-SiO_2 , $MoO_3-Al_2O_3$, MoO_3-MgO , or MoO_3 -active carbon. The catalyst carrier often plays an important role in catalytic activity. We now report a surprising effect of the method of preparation of TiO_2 on the activity of MoO_3 -TiO₂ for the reduction of nitrous oxide with hydrogen.

 MoO_3 was mounted on the carriers as follows. The carrier was immersed in an aqueous solution of a known amount of ammonium paramolybdate, which was then evaporated to dryness over a water bath, dried at 120 °C

FIGURE. Effect of carriers of supported MoO₃ catalysts on % conversion in the reduction of N₂O. (Catalyst weight: 4.5 g; space velocity: 2020 h⁻¹.) \blacktriangle MoO₃-TiO₂ (β), \triangle MoO₂-Al₂O₃, \blacksquare MoO₃-active carbon, \bigoplus MoO₃-SiO₂, \bigcirc MoO₃-MgO, \times MoO₃-TiO₂ (α).

for 24 h, and calcined in air at 600 °C for 3 h. The content of MoO₃ was 7 wt. % in all cases. Orthotitanic acid (α -titanic acid)¹ was prepared by hydrolysis of an aqueous solution of TiCl₄ cooled in an ice bath with 28% aqueous ammonia until the pH became 7, washing with distilled water until no chloride ion was detected, and drying at 120 °C for 24 h. Metatitanic acid (β -titanic acid)¹ was

prepared by hydrolysis of $TiOSO_4$ with boiling water, washing with boiling water until no sulphate ion was detected, and drying as above. $Mg(OH)_2$ was prepared by hydrolysis of an aqueous solution of $Mg(NO_3)_2$ with 28% aqueous ammonia, followed by washing with distilled water, and drying as above. Alumina (Mizusawa Chem. Co., spherical neobead C), SiO₂ (Nissan Chem. Co., Colloidal silica), and active carbon (Takeda Chemicals Inc., HGN933) were also used as catalyst carriers.

The surface areas of the MoO_3 -active carbon, $MoO-Al_2O_3$, MoO_3 -SiO₂, MoO_3 -MgO, and MoO_3 -TiO₂ systems calcined at 600 °C in air for 3 h and in a stream of hydrogen for 2 hr were determined by the B.E.T. method using N₂ gas as adsorbate to be 860, 266, 233, 78, and 68 m²/g, respectively.

The reduction of nitrous oxide with hydrogen was carried out at 250—450 °C by using a conventional flow apparatus wrapped with a tape heater to prevent the condensation of the water vapour formed. The molar ratio of nitrous oxide to hydrogen was 1:9, the space velocity being 2020 h⁻¹. Prior to reaction, the catalysts were reduced with hydrogen at 600 °C for 2 h and cooled to the reaction temperature; the reaction was then started. Unchanged N₂O and the H₂O formed were analysed by gas chromatography with a 2 m column of Porapeak Q. The formation of ammonia was negligible, as shown by titration with 0·1 M H₂SO₄ using methyl red as an indicator.

The results are shown in the Figure. At 450 °C, MOO_3 -TiO₂(β), MOO_3 -Al₂O₃, and MoO-active carbon showed 100% conversion, while MOO_3 -SiO₂ and MOO_3 -MgO were almost completely inactive. Without a catalyst, the conversion was 2% at 450 °C. At 250 °C, only MOO_3 -TiO₂(β) showed 100% conversion and the activities of the other catalysts including MOO_3 -TiO₂(α) were <10%.

(Received, 26th April 1976; Com. 459.)

¹ J. Barksdale, 'Titanium, its Occurrence, Chemistry and Technology,' 2nd edn., Ronald Press, New York. 1966, p. 78.