A New Class of Hydride-bridged Platinum Complex with Application as Hydrosilylation Catalysts; Molecular and X-Ray Crystal Structure of trans-Di-µ-hydrido-bis(tricyclohexylphosphine)bis(triethylsilyl)diplatinum(*Pt*-*Pt*)

By Michael Green, Judith A. K. Howard, Jill Proud, John L. Spencer, F. Gordon A. Stone,* and Constantinos A. Tsipis

(Department of Inorganic Chemistry, The University, Bristol BS8 ITS)

Summary The reaction of $[Pt(C_2H_4)_2(PCy_3)]$ (Cy = cyclohexyl) with H_2 or R_3MH (M = Si, Ge; R = alkyl, aryl, alkoxy, Cl) affords, respectively, the hydride bridged dinuclear species $[PtH(\mu-H)(PCy_3)]_2$ and $[PtMR_3(\mu-H)-(PCy_3)]_2$; the triethylsilyl complex, which along with the other group 4a species catalyses the addition of R_3MH to olefins and acetylenes, was identified structurally by single crystal X-ray crystallography.

DURING a study of the chemistry of zero-valent complexes $[{\rm Pt}({\rm C_2H_4})_2({\rm PR_3})]^1$ we have observed the formation of novel hydride bridged dinuclear complexes, which are very effective catalysts for hydrosilylation of olefins and acetylenes. The reaction (light petroleum; 20 °C) of R₃MH (M = Si; R = alkyl, aryl, alkoxy, Cl) with $[{\rm Pt}({\rm C_2H_4})_2 - ({\rm PCy_3})]$ affords a series of yellow to white crystalline complexes formulated on the basis of spectroscopy and elemental analysis as $[{\rm PtMR_3}({\rm H})({\rm PCy_3})]_n$ (Scheme). The ³¹P

Scheme

n.m.r. spectrum of the triethylsilyl complex (I, M = Si, R = Et) showed a singlet at $-63 \cdot 2 \text{ p.p.m.}$ [(rel. ext. H_3PO_4) with two sets of ¹⁹⁵Pt satellites, J(PPt) 3228 and 60 Hz], and a second-order spectrum (AA'XX') arising from molecules with two active platinum nuclei. This implied that (I) was a dinuclear complex. Confirmation was therefore sought by a single crystal X-ray diffraction study. Crystal data: monoclinic, space group $P2_1/c$, Z = 4, $a = 20 \cdot 72(2)$, $b = 13 \cdot 88(1)$, $c = 18 \cdot 97(1)$ Å; $\beta = 101 \cdot 15(7)^{\circ}$. R is currently 0.075 for 3150 independent reflections [$I > 2 \cdot 0 \sigma$ (I)] collected on a Syntex P2₁ four-circle diffractometer at 200 K ($2 \cdot 9 \leq 2\theta \leq 40^{\circ}$).

The molecular structure is shown in the Figure. The geometry of the phosphine and silyl groups is unexceptional; however, the six atoms comprising the main skeleton of the molecule are significantly non-coplanar with a dihedral angle of 21° between the planes defined by Pt(1)P(1)Si(1) and Pt(2)P(2)Si(2). The Pt-Pt separation of 2.692(3) Å is

FIGURE. Molecular structure of $[PtSiEt_3(\mu-H)(PCy_3)]_2$. Pt(1)-P(1), 2·282(9); Pt(2)-P(2), 2·271(9); Pt(1)-Si(1), 2·33(1); Pt(2)-Si(2), 2·34(1) Å; $\angle Si(1)$ -Pt(1)-Pt(2), 124·9(3); Si(2)-Pt(2)-Pt(1), 123·5(3); P(1)-Pt(1)-Pt(2), 131·4(3); P(2)-Pt(2)-Pt(1), 133·9(3)°.

not unusual and there are examples of both bridged and unbridged Pt-Pt bonds longer and shorter than this distance.² This complex may be contrasted with the well known halide-bridged dimers of platinum where the Pt-Pt separation of 3.48 Å represents a non-bonding interaction.³ The presence of bridging hydrogens was indicated by the unexpectedly small P-Pt-Si bond angles of 102 and 103°. Support for this structural feature† was provided by the i.r. spectrum of (I), which showed no evidence for a v(PtH) stretching frequency in the region 2300—1900 cm⁻¹ but had a broad absorption at *ca*. 1600 cm⁻¹; this is assigned to a

[†] Bridged hydride ligands have been postulated (R. A. Schunn, *Inorg. Chem.*, 1976, 15, 208) for (Pd-H-Pd) and confirmed for (Ni-H-Ni) (P. W. Jolly and G. Wilke, 'The Organic Chemistry of Nickel,' Vol. I, Academic Press, London, 1974, p. 145; and references cited therein.)

bridged hydride. So far, attempts to confirm the presence of a bridged hydride by ¹H n.m.r. spectroscopy have been unsuccessful, this difficulty arising probably from dynamic behaviour.

TABLE. Representative hydrosilylation and hydrogermylation

	rea	actions	
		Catalyst ^a	
		(room	
Substrate	R₃MH	temp.)	Product (yield)
Hex-1-ene	Me ₂ EtSiH	Α	n-Me ₂ EtSiC ₆ H ₁₈ (90%)
Hex-l-ene	Me ₃ GeH	в	n-Me,GeC,H ₁₃ (80%)
Hexa-1,5-diene	Me, PhSiH	Α	1.6-(Me,PhSi),C,H,
	•		(100%)
Styrene	Me,EtSiH	Α	PhCH,CH,SiMe,Et
•	-		(92%)
4-Vinylcyclo-	Me_2PhSiH	Α	PhMe,SiCH,CH,C,H
hex-l-ene	-		(75%)
Norbornene	MeCl ₂ SiH	С	exo-MeCl_SiC_H,
	-		(85%)
Allyl chloride	Cl _a SiH	D	ClaSiCH,CH,CH,Cl
•	-		(70%)
$PhC \equiv CH$	Me ₂ ClSiH	С	trans-PhCH = CH-
	-		SiMe ₂ Cl (92%)

^a A = [PtSiMe₂Et(μ -H)(PCy₃)]₂; B = [PtGeMe₃(μ -H)(PCy₃)]₂; C=[PtSiMe₂Bz(μ -H)(PCy₃)]₂; D = [PtSiCl₃(μ -H)(PCy₃)]₂.

The related reaction of hydrogen (bubbled) with [Pt- $(C_2H_4)_2(PCy_3)$ in light petroleum at room temperature gives the yellow crystalline complex (II) [³¹P n.m.r. (¹H

decoupled) resonance at 50.2 p.p.m. (s with two sets of ¹⁹⁵Pt satellites, ${}^{1}J_{PPt}$ 3468 and ${}^{2}J_{PPt}$ 150 Hz)]. An i.r. band at 2090 cm⁻¹ is ascribed to a terminal Pt-H stretch and a broad band at 1550 cm^{-1} to a bridging hydride (Pt-H-Pt). As with the silvl complexes, there was no evidence in the 1H n.m.r. spectrum for either Pt-H or Pt-H-Pt. The deuterium analogue (IIa) showed a terminal Pt-D stretch at 1490 cm^{-1} , but the region in which the bridging deuteride vibration was expected (ca. 1100 cm^{-1}) was obscured by other ligand vibrations.

The silyl complexes, for example (I), are excellent hydrosilvlation catalysts. Under mild conditions (20 °C) and relatively low catalyst concentrations $(10^{-4}-10^{-6} \text{ mol.})$ catalyst/mol. silane) they promote the ready addition of silanes to acetylenes and terminal or strained olefins (Table). Internal olefins are not hydrosilylated under the same conditions and do not isomerise.

A brief study has also been made of the corresponding reactions with germanes. Trimethylgermane reacts with $[Pt(C_2H_4)_2(PCy_3)]$ to give (III) $[PtGeMe_3(\mu-H)(PCy_3)]_2$, which is a catalyst for the hydrogermylation of terminal olefins.

We thank Dr. B. L. Goodall for some preliminary observations, and Dr. M. Murray for n.m.r. studies.

(Received, 18th June 1976; Com. 688.)

¹ M. Green, J. A. K. Howard, J. L. Spencer, and F. G. A. Stone, J.C.S. Chem. Comm., 1975, 449. ² K. P. Wagner, R. W. Hess, P. M. Treichel, and J. C. Calabrese, Inorg. Chem., 1975, 14, 1121; J. P. Fackler, Jr., J. Amer. Chem. Soc., 1972, 94, 1009; K. W. Browall, L. V. Interrante, and J. S. Kasper, J. Amer. Chem. Soc., 1971, 93, 6289; A. Modinos and P. Woodward, J.C.S. Dalton, 1975, 2134.

³ S. F. Watkins, J. Chem. Soc. (A), 1970, 168.