Synthesis and Absolute Configuration of (-)-Bisnoradamantan-2-one [(-)-Tricyclo[3.3.0.0, ${ }^{3,}$]octan-2-one]

By Masao Nakazaki,* Koichiro Naemura, and Nobumasa Arashiba
(Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan)

Summary (-)-Tricyclo[3.3.0.03,7]octane-2-carboxylic acid
(6) was converted into (-)-bisnoradamantan-2-one (5) whose c.d. spectrum indicated the $(1 R, 3 R, 5 R, 7 R)$ absolute configuration.

Bridging the 1,4 - and 2,5-positions of cyclohexane with polymethylene chains affords rotatory chiral (gyrochiral) ${ }^{1}$

(1)
(2), $m=n=2$
(3), $m=1, n=2$

(7), $R=\mathrm{CONMe}_{2}$
(8). $\mathrm{R}=\mathrm{CH}_{2} \mathrm{NMe}_{2}$
(9), $\mathrm{R}=\mathrm{CH}_{2} \mathrm{NMMe}_{2}$

(4), $X=H_{2}$
(5), $X=0$

(6)

(ii), $R=H$
(13), $\mathrm{R}=\mathrm{CHMe}_{2}$
tricyclic compounds ($1 ; m \neq n \neq 1$); we reported syntheses and absolute configurations of two representative compounds, (+)-twistane (2) having D_{2} symmetry, ${ }^{2}$ and (+)-twist-brendane (3) having C_{2} symmetry. ${ }^{3}$ These compounds have an intrinsically chiral framework which is in contrast to tricyclo [3.3.0.0 $\left.0^{3,7}\right]$-octane ('bisnoradamantane') ${ }^{4}$ (4) which has $D_{2 d}$ symmetry and is achiral. Molecular models show that (4) consists of two enantiomeric $D_{2^{-}}$ twisted cyclohexane species fused together resulting in two pairs each of enantiotopic and homotopic methylene groups.

Table. C.d. spectra of (-)-bisnoradamantan-2-one (5) and ($1 R, 3 R, 4 S, 5 R, 7 R$)-4-isopropylbicyclo $\left[3.3 .0 .0^{3}, 7\right.$ octan-2-one (12) in iso-octane.

Compound	λ / nm	$[\theta]$
(5)	$281 \cdot 6 \mathrm{sh}$	-9.71×10^{3}
	286.3	-1.05×10^{4}
	290.4 sh	-9.91×10^{3}
	296.2 sh	-7.77×10^{3}
(12)	299.5	-2.48×10^{3}
	304 sh	-2.43×10^{3}

Conversion of one of the methylene groups into an oxogroup breaks the $D_{2 d}$ symmetry furnishing bisnorada-mantan-2-one (5) with C_{2} symmetry. As part of a program to synthesise high symmetry chiral cage compounds. we report here the synthesis and absolute configuration of (5).

Optical resolution of racemic tricyclo[3.3.0.0 3,7] octane-2carboxylic acid^{5} (6) via the (+)-2-(1-aminoethyl)naphthalene salt furnished $(-)-(6)\left\{[\alpha]_{D}^{14}-22.5^{\circ}\left(\mathrm{CHCl}_{3}\right)\right.$, m.p. $\left.85-86^{\circ} \mathrm{C}\right\}$. Treatment of (6) with thionyl chloride in benzene, followed by anhydrous dimethylamine, produced
the (-)-dimethylamide (7) $\left\{[\alpha]_{D}^{12}-3 \cdot 2^{\circ}\left(\mathrm{CHCl}_{3}\right)\right.$, m.p. $\left.82-84{ }^{\circ} \mathrm{C}\right\}$. \dagger Compound (7) was reduced with LiAlH_{4} to give the $(+)$-dimethylaminomethyl derivative (8) $\left\{[\alpha]_{D}^{13}\right.$ $+5 \cdot 7^{\circ}\left(\mathrm{CHCl}_{3}\right)$, b.p. $102-103{ }^{\circ} \mathrm{C}$ at 20 mmHg$\}$ which, on

(12)

(14)

(15)
treatment with hydrogen peroxide, afforded the amine oxide (9). Pyrolysis of (9) gave the olefin (10) $\left\{[\alpha]_{\mathrm{D}}^{12}-29 \cdot 7^{\circ}\right.$ $\left(\mathrm{CHCl}_{3}\right), \quad[\theta]-6.96 \times 10^{4}$ at 192 nm (iso-octane), b.p. $92-93^{\circ} \mathrm{C}$ at 120 mmHg , yield 59% \} whose structure was confirmed by i.r. [$v($ film $) 3060,1683$, and $\left.860 \mathrm{~cm}^{-1}\right]$ and ${ }^{1} \mathrm{H}$ n.m.r. $\left[\delta\left(\mathrm{CCl}_{4}\right) 1 \cdot 42(6 \mathrm{H}, \mathrm{s}), 2 \cdot 38(4 \mathrm{H}, \mathrm{m})\right.$, and $4 \cdot 09(2 \mathrm{H}$, s)] spectroscopy. Ozonization of the olefin (10) in methylene chloride followed by treatment with zinc powder and acetic acid, gave (- -)-bisnoradamantan-2-one (5) $\{33 \%$,
$[\alpha]_{\mathrm{D}}^{13}-55 \cdot 9^{\circ}(\mathrm{EtOH})$, m.p. $\left.103-105^{\circ} \mathrm{C}\right\}$, the i.r. and n.m.r. spectra of which were identical with those of the racemic form prepared by Sauers' procedure. ${ }^{6}$
C.d. spectra ${ }^{2,3,7}$ of various tricyclic ketones, prepared from intermediates of known absolute configurations, indicate that the sign of c.d. curve due to the $n-\pi^{*}$ transition around 300 nm can be predicted by applying the octant rule to the 'outer ring's in the projection formula which holds the carbonyl group at the 'point of twist'. ${ }^{9}$ Applying this generalization to (-)-bisnoradamantan-2-one (5) with a negative Cotton effect (see Table), we assigned the absolute configuration (11) which led to the absolute configuration (-)-($1 R, 3 R, 5 R, 7 R$)-tricyclo[3.3.0.0 ${ }^{3,7}$]octan-2-one. This conclusion was further supported by the negative Cotton effect (see Table) exhibited by ($1 R, 3 R, 4 S, 5 R, 7 R$)-4-isopropyltricyclo[3.3.0.0 ${ }^{3,7}$]octan-2-one (b.p. $125{ }^{\circ} \mathrm{C}$ at 20 mmHg) (12) whose projection formula can be illustrated as (13). Compound (12) was prepared from the (-)-oxetane (14) with known absolute configuration ${ }^{2}$ via the secondary alcohol ${ }^{10}$ (15) $\left\{\left[\alpha_{\mathrm{D}}^{17}\right]+2.8^{\circ}(\mathrm{EtOH})\right.$, b.p. $119-122^{\circ} \mathrm{C}$ at 25 mmHg .
(Received, 27th May 1976; Com. 606.)
\dagger Satisfactory elemental analyses were obtained for new compounds and their i.r. and n.m.r. spectra are in accord with the assigned structures.
${ }^{1}$ M. Nakazaki, K. Naemura, and H. Yoshihara, Bull. Chem. Soc. Japan, 1975, 48, 3278.
${ }^{2}$ K. Adachi, K. Naemura, and M. Nakazaki, Tetrahedron Letters, 1968, 5467 ; M. Tichy, ibid., 1972, 2001; M. Tichy and J. Sicher, Coll. Czech. Chem. Comm., 1972, 37, 3106.
${ }^{3}$ K. Naemura and M. Nakazaki, Bull. Chem. Soc. Japan, 1973, 46, 888; M. Nakazaki, K. Naemura, and S. Harita, ibid., 1975, 48, 1907.
${ }^{4}$ P. K. Freeman, V. N. M. Rao, and G. E. Bigam, Chem. Comm., 1965, 511 ; B. R. Vogt, S. R. Suter, and J. R. E. Hoover, Tetrahedron Letters, 1968, 1609.
${ }^{5}$ R. R. Sauers and K. W. Kelly, J. Org. Chem., 1970, 35, 3286.
${ }^{6}$ R. R. Sauers, K. W. Kelly, and B. R. Sickles, J. Org. Chem., 1972, $37,537$.
${ }^{7}$ M. Nakazaki, K. Naemura, and Y. Kondo, J. Org. Chem., 1976, 41, 1229.

- G. Snatzke and F. Werner-Zamojska, Tetrahedron Letters, 1972, 4275.
${ }^{\circ}$ C. Djerassi and W. Klyne, Proc. Nat. Acad. Sci. U.S.A., 1962, 48, 1093.
${ }_{10}$ The stereochemistry of the secondary alcohol (15) was assigned by analogy to the methyl derivative: R. R. Sauers and J. A. Whittle, J. Org. Chem., 1969, 34, 3579; R. R. Sauers, W. Schinski, M. M. Mason, E. O'Hara, and B. Byrne, ibid., 1973, $38,642$.

