## $\alpha$ -Ketocarbene Formation on $\gamma$ -Radiolysis of Phenylacetylenes in Liquid CO<sub>2</sub>

By Akira Hori, Setsuo Takamuku, and Hiroshi Sakurai

(The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka 565, Japan)

Summary  $\gamma$ -Radiolysis of liquid CO<sub>2</sub> and PhC  $\equiv$ CR (1) in the presence of methanol gives PhCH(OMe)COR (5) and PhRCHCO<sub>2</sub>Me (6), indicating the formation of an  $\alpha$ -ketocarbene (2) by the attack of O(<sup>3</sup>P), generated by  $\gamma$ -radiolysis of liquid CO<sub>2</sub>, on the phenylacetylene.

It has been shown that  $\gamma$ -radiolysis of CO<sub>2</sub> in the liquid phase produces atomic oxygen.<sup>1</sup> We recently reported the radiolysis of alkenes in liquid CO<sub>2</sub>, and obtained the corresponding oxiran and carbonyl compounds,<sup>2</sup> indicating that the most reasonable oxidizing species must be a groundstate oxygen atom. Furthermore, radiolysis of alkanes in liquid CO<sub>2</sub> produces isomers of alcohols with highly regioselective substitution of tertiary carbon atoms.<sup>3</sup> This result is consistent with that obtained in the reaction of alkanes with  $O({}^{3}P)$  atoms generated by visible light irradiation of ozone in the liquid phase.<sup>4</sup> Studies of the reaction of atomic oxygen with organic molecules in the liquid phase are thus possible by this technique. We now report the  $\gamma$ -radiolysis of alkynes in liquid  $CO_2$ ; little is known about the reaction of alkynes with atomic oxygen.<sup>5</sup>

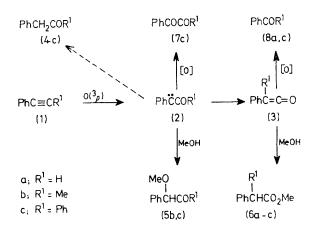

Diphenylacetylene (1c, 1 mmol) in liquid  $CO_2$  (1·4 mol) was irradiated with a <sup>60</sup>Co (7000 Ci) source in a stainless steel autoclave at 0 °C for 6 h. The dose rate, measured by FeSO<sub>4</sub> dosimetry, was 1·7 × 10<sup>19</sup> eV g<sup>-1</sup> h<sup>-1</sup>. G.l.c. analysis of the product showed the formation of benzophenone (8c, 3·7%), benzil (7c, 1·3%), and deoxybenzoin (4c, 2·5%). If methanol was added after the radiolysis, methyl diphenyl-

TABLE. y-Radiolysis of phenylacetylenes in liquid CO2 in the presence of alcohols<sup>8</sup>

| $PhC \equiv CR^1$              |                    | Irradiation<br>OH time/h | Conversion<br>/% | Product yield/% <sup>b</sup> |                 |                  |                  |          |
|--------------------------------|--------------------|--------------------------|------------------|------------------------------|-----------------|------------------|------------------|----------|
| ( <b>1</b> ) (amount<br>/mmol) | R <sup>2</sup> OH  |                          |                  | (4)                          | (5)             | (6)              | (7)              | (8)      |
| (1a) (3)                       | MeOH               | <b>24</b>                | <b>56</b>        | С                            | d               | 17.6(97)         | с                | 0.5(3)   |
| (1b) (3)                       | MeOH               | <b>24</b>                | 54               | С                            | 1.5(8)          | 16.4(92)         | с                | ď        |
| (1c) (3)                       | MeOH               | <b>24</b>                | <b>42</b>        | 0.7(2)                       | 4.6(15)         | 20.3(66)         | 4.9(16)          | 0.2(1)   |
| (1c) (1)                       | MeOH               | 1                        | 6                | 2.5(7)                       | $5 \cdot 3(15)$ | 15.5(45)         | $11 \cdot 3(33)$ | à        |
| (1c) (1)                       | MeOH               | 6                        | 25               | $2 \cdot 0(6)$               | $4 \cdot 6(13)$ | 21·7(63) e       | 5.9(17)          | 0.1(0.3) |
| (1c) (1)                       | Pr <sup>i</sup> OH | 6                        | 17               | $2 \cdot 3(8)$               | 0.1(0.4)        | $25 \cdot 4(89)$ | 0.2(0.7)         | 0.4(1)   |

• In liquid CO<sub>2</sub> (1.4 mol) with R<sup>2</sup>OH (1 ml) at 0 °C. • All products were identified by comparison of retention times on g.l.c. and mass spectra with those of authentic samples. Product yields are based on the amount of phenylacetylenes (1) consumed; relative yields are shown in parentheses. • Amount not determined. • Mot detected. • G value 0.68 (molecule/100 eV).

acetate (6c, 11.0%) was obtained, indicating the presence of diphenylketen. The radiolysis of phenylacetylenes (1) was



## SCHEME

carried out in the presence of an alcohol (1 ml) as a keten trap (see Table). The main products were the esters (6) in all cases (relative yields, 66-97%), showing the presence of considerable amounts of phenylketens (3). This observation, together with the formation of the ethers (5), suggests the generation of an  $\alpha$ -ketocarbene (2). The relative ratios of the methyl ether (5) to the methyl ester (6) depended on the phenylacetylenes; (5): (6) = ca. 0:1 for (1a), 0.087:1 for (1b), and 0.23:1 for (1c). Benzil (7c) and benzophenone (8c), which may be produced by further oxidation of (2c) and (3c), respectively, are also obtained in the case of (1c).<sup>6</sup> The formation of these products can be rationalized by the paths in the Scheme.

As shown in the Table, the use of  $Pr^iOH$ , a good hydrogen donor, instead of methanol does not increase the yield of (4c), indicating that the  $\alpha$ -ketocarbene (2) produced in this reaction has a low ability for hydrogen abstraction.<sup>7</sup> The formation of (4c) may therefore not be interpreted in terms of hydrogen abstraction by the ketocarbene (2).

## (Received, 26th April 1976; Com. 461.)

<sup>1</sup> D. L. Baulch, F. S. Dainton, and R. L. S. Willix, Trans. Faraday Soc., 1965, 61, 1146; A. R. Anderson and D. A. Dominey, Radiation Res. Rev., 1968, 1, 269; M. Yoshimura, M. Chosa, Y. Soma, and M. Nishikawa, J. Chem. Phys., 1972, 57, 1626.

<sup>2</sup> H. Sakurai, K. Akimoto, S. Toki, and S. Takamuku, Chem. Letters, 1975, 469.

<sup>3</sup> A. Hori, S. Takamuku, and H. Sakurai, to be published.

<sup>4</sup> T. H. Varkony, S. Pass, and Y. Mazur, J.C.S. Chem. Comm., 1975, 709.

<sup>6</sup> H. E. Avery and S. J. Heath, Trans. Faraday Soc., 1972, 68, 512. <sup>6</sup> G. B. Kistiakowsky and K. Sauer, J. Amer. Chem. Soc., 1958, 80, 1066; R. Wheland and P. D. Bartlett, *ibid.*, 1970, 92, 6057; J. K. Crandall, S. A. Sojka, and J. B. Komin, J. Org. Chem., 1974, 39, 2172.

A. Padwa and R. Layton, Tetrahedron Letters, 1965, 2167; A. M. Trozzolo, Accounts Chem. Res., 1968, 1, 329.