η^{6}-Fluorene and η^{5}-Fluorenyl Complexes of Iron and Manganese; \boldsymbol{X}-Ray Structure of (η^{5}-Cyclopentadienyl)(η^{6}-fluorenyl)iron

By J. W. Johnson and P. M. Treichel*
(Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706)

Summary Reversible deprotonation of $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{6}\right.\right.$-fluorene) $] \mathrm{PF}_{8}$ and $\left[\mathrm{Mn}\left(\eta^{6}\right.\right.$-fluorene $\left.)(\mathrm{CO})_{3}\right] \mathrm{PF}_{6}$ initially produces zwitterionic complexes wherein co-ordination to the six-membered ring is retained, and the manganese complex very slowly reverts to the isomeric η^{5} complex, $\left[\mathrm{Mn}\left(\eta^{5}\right.\right.$-fluorenyl) $\left.(\mathrm{CO})_{3}\right]$; the X-ray structure of the iron compound $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{13} \mathrm{H}_{9}\right)\right]$ has been determined.

The complexes $\left[\mathrm{Mn}\left(\eta^{6}\right.\right.$-fluorene $\left.)(\mathrm{CO})_{3}\right] \mathrm{PF}_{6}$ and $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ (η^{6}-fluorene) $] \mathrm{PF}_{6}$ can be prepared by standard routes, the former from $\left[\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}\right], \mathrm{AlCl}_{3}$, and fluorene, and the latter from $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right], \mathrm{AlCl}_{3}, \mathrm{Al}$, and fluorene. Using t-butoxide we have deprotonated each of the species, producing neutral compounds wherein metal co-ordination to one of the six-membered rings is maintained. Structures were initially ascertained by ${ }^{1} \mathrm{H}$ n.m.r. data which showed the related protons on the two six-membered rings on each fluorenyl ligand to be non-equivalent; subsequently the structure of the iron compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{13} \mathrm{H}_{9}\right)\right]$, green crystals, m.p. $105{ }^{\circ} \mathrm{C}$, was confirmed by a crystallographic study. Crystal data: space group $P 2_{1} / c, a=8.944(3)$, $b=14 \cdot 600(4), c=20 \cdot 201(5) \AA, \beta=100 \cdot 08(2)^{\circ}, U=$ 2597(1) $\AA^{3}, Z=8, D_{\mathrm{c}}=1.46 \mathrm{~g} \mathrm{~cm}^{-3}, D_{\mathrm{m}}=1.45 \mathrm{~g} \mathrm{~cm}^{-3}$. A total of 2323 independent $[F>2 \sigma(F)]$ observations were collected by diffractometric techniques. The structure, solved by direct methods, was refined by anisotropic blockdiagonal least-squares techniques to an R_{1} value of 0.045 .

The molecular geometry of this compound is shown in the Figure.

Figure. X-Ray structure of $\left[\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{6}-\mathrm{C}_{13} \mathrm{H}_{9}\right)\right]$. Distances in the two crystallographically non-equivalent molecules (A) and (B) are: $\mathrm{Fe}-\mathrm{C}(1)$, (A) $2 \cdot 122(5)$, (B) $2 \cdot 104(6)$; $\mathrm{Fe}-\mathrm{C}(2)$, (A) $2.053(5)$, (B) $2.047(6) ; \mathrm{Fe}-\mathrm{C}(3)$, (A) $2.039(5)$, (B) $2.032(6)$; $\mathrm{Fe}-\mathrm{C}(4)$, (A) $2.072(5)$, (B) $2.074(6) ; \mathrm{Fe}-\mathrm{C}(10)$, (A), $2.316(5)$, (B) $2 \cdot 300(5)$; $\mathrm{Fe}-\mathrm{C}(11)$, (A) $2 \cdot 152(5)$, (B) $2 \cdot 175(5)$; $\mathrm{C}(9)-\mathrm{C}(10)$, (A) $1 \cdot 372(7)$, (B) $1 \cdot 397(7)$; C(9)-C(13), (A) $1 \cdot 435(8)$, (B) $1 \cdot 413(7) \AA$.

The metal atom remains co-ordinated to one six membered ring, slightly displaced from $\mathrm{C}(10)$ which also lies
$0 \cdot 142(8) \AA$ above a plane defined by the other co-ordinated carbon atoms. The best representation of bonding for the iron compound appears to be (i), wherein a positive charge is retained on the metal and negative charge remains substantially on $\mathrm{C}(9)$.

Reactions of the iron compound seem to be in accord with this representation of bonding. A reaction with $\mathrm{MeOSO}_{2} \mathrm{~F}$ occurs in minutes giving stereospecifically the exo-9-methylfuorene-iron compound; similar reactions occur with MeI and $p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br}$. The product is protonated readily, but non-stereospecifically.
The chemistry of the analogous manganese complex, [$\mathrm{Mn}\left(\mathrm{C}_{13} \mathrm{H}_{9}\right)(\mathrm{CO})_{3}$], offers some interesting contrasts. It can be formed from $\left[\mathrm{Mn}\left(\eta^{6}-\mathrm{C}_{13} \mathrm{H}_{10}\right)(\mathrm{CO})_{3}\right] \mathrm{PF}_{8}$ using weaker bases such as $\mathrm{Et}_{3} \mathrm{~N}$, suggesting that $\left[\mathrm{Mn}\left(\mathrm{C}_{13} \mathrm{H}_{9}\right)(\mathrm{CO})_{3}\right]$ is a weaker

(i)

(ii)
base than $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{13} \mathrm{H}_{9}\right)\right]$. The complex is also a poorer nucleophile. Thus reaction with $\mathrm{MeOSO}_{2} \mathrm{~F}$ at $25^{\circ} \mathrm{C}$ requires 3 days rather than minutes to reach completion. Possibly, these data are better in accord with a structure represented by (ii).

After 2 weeks in the solid state or 1.2 h in refluxing hexane, the manganese compound rearranges to the known ${ }^{1}$ isomeric species $\left[\mathrm{Mn}\left(\eta^{5}-\mathrm{C}_{13} \mathrm{H}_{9}\right)(\mathrm{CO})_{3}\right.$] [equation (1)]. No

rearrangement is found to occur with the iron compound. This second compound, $\left[\mathrm{Mn}\left(\eta^{5}-\mathrm{C}_{13} \mathrm{H}_{9}\right)(\mathrm{CO})_{3}\right]$, does not undergo the reactions of its isomeric species.
J.W.J. thanks the National Science Foundation for a predoctoral fellowship.
(Received, 10th May 1976; Com. 518.)
${ }^{1}$ R. B. King and A. Efraty, J. Organometallic Chem., 1970, 23, 527.

