The Nature of $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{12}\right]$ in Solution

By Brian F. G. Johnson*
(University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW)

Summary The possible existence of a new isomeric form of $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{12}\right]$ in solution is discussed and a new mechanism of CO-migration proposed.

Dodecacarbonyltri-iron has the crystal structure (1). ${ }^{1}$ Essentially it consists of a triangular arrangement of iron atoms with two asymmetric carbonyl bridges along one edge and ten terminally bound carbonyl ligands. Poliakoff and Turner ${ }^{2}$ have shown that in an argon matrix at 20 K , $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{12}\right]$ has an i.r. spectrum reasonably consistent with this geometry. There is a weak band at $2110 \mathrm{~cm}^{-1}$, weak and medium intensity bands at ca. 1870 and $1830 \mathrm{~cm}^{-1}$ and six medium to strong bands between 2015 and $2060 \mathrm{~cm}^{-1}$. In solution the structure is thought to change since the i.r. spectrum is not easily reconciled with (1). For $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{12}\right]$ in n -hexane ${ }^{3}$ there is a weak band at $2103 \mathrm{~cm}^{-1}$, four bands of variable intensity in the region $2000-2050 \mathrm{~cm}^{-1}$ but only very weak, broad bands at ca. 1867 and $1838 \mathrm{~cm}^{-1}$. Cotton and Hunter ${ }^{4}$ argue that the weakness of the absorptions in the bridging region indicates that only a very small amount of the molecules present possess the $C_{2 v}$ structure (1), and since the variation in energy in passing over a continuous range of structures, from a non-bridged form (2) $\left[p\right.$ seudo- $\left.\mathrm{Os}_{3}(\mathrm{CO})_{\mathbf{1 2}}\right]$ to one with a pair of symmetrical

Figure 1. Structure of $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{12}\right]$ in the solid. $\mathrm{Fe}(1)\left(\mathrm{CO}^{1}\right.$ $\left.\mathrm{CO}^{2} \mathrm{CO}^{3} \mathrm{CO}^{4}\right) ; \quad \mathrm{Fe}(2)\left(\mathrm{CO}^{5} \mathrm{CO}^{8} \mathrm{CO}^{7} \mathrm{CO}^{8} \mathrm{CO}^{9}\right) ; \quad \mathrm{Fe}(3)\left(\mathrm{CO}_{\mathrm{B}}^{7} \mathrm{CO}_{\mathrm{B}}^{8}\right.$ $\mathrm{CO}^{10} \mathrm{CO}^{11} \mathrm{CO}^{12}$).
bridges, is small (estimated to be $<5 \mathrm{kcal} \mathrm{mol}^{-1}$), the broad and unresolved terminal CO absorptions can be regarded as the convolution of many spectra due to a whole range of structures which differ from each other only in the degree of asymmetry associated with the two CO bridges. Interconversion between the two extreme limits (1) and (2) via this continuous range of configurations leads to CO scrambling.

Implicit in Cotton's scheme is the view that (2) possesses the pseudo- $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]\left(D_{3 h}\right)$ structure. Since $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{12}\right]$ in the crystal is known to have the favourable icosahedral arrangement of twelve CO groups and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ has the
less favourable cubo-octahedral arrangement (Figure 4) it may be taken that the interconversion $C_{2 v} \rightarrow D_{3 h}$ corresponds to a change of the twelve CO groups from an icosahedron to a cubo-octahedron about the metal triangle. This process suffers from two limitations. First it does not equilibrate all the CO groups; this is achieved only after repeated concerted shifts of two CO groups i.e. after several interconversions $C_{2 v} \rightleftarrows D_{3 h}$, and secondly we estimate that for the change $C_{2 v} \rightarrow D_{3 h}$ a substantial increase in all $\mathrm{Fe}-\mathrm{Fe}$ distances from ca. $2 \cdot 60$ (average) to $2 \cdot 80 \AA$ is required. As an alternative explanation, we may consider that the icosahedral arrangement of the twelve CO groups is maintained during the fluxional process and that equilibration of these groups is brought about by the reorientation of the Fe_{3} triangle within the CO -icosahedron. This process corresponds to a truly concerted process and implies the simultaneous formation and breaking of CObridges. ${ }^{5}$

Figure 2. Non-bridged isomer $\left(D_{3}\right)$ of $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{12}\right] \mathrm{Fe}(\mathbf{1})\left(\mathrm{CO}^{1}\right.$ $\left.\mathrm{CO}^{2} \mathrm{CO}^{3} \mathrm{CO}^{4}\right) ; \mathrm{Fe}(2)\left(\mathrm{CO}^{5} \mathrm{CO}^{6} \mathrm{CO}^{7} \mathrm{CO}^{9}\right) ; \mathrm{Fe}(3)\left(\mathrm{CO}^{8} \mathrm{CO}^{10} \mathrm{CO}^{11} \mathrm{CO}^{12}\right)$.

Figure 1 shows the orientation of Fe_{3} within the CO icosahedron corresponding to structure (1). Rotation of the Fe_{3} triangle by 30° about the C_{2} axis which passes through the unique Fe atom $\mathrm{Fe}(\mathrm{I})$ produces a second isomeric form of $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{12}\right](3)$. This is also based on the icosahedron of CO groups (Figure 2) but in contrast to forms 1) and (2) all the CO groups are equivalent (and terminal bonded) and all the $\mathrm{Fe}-\mathrm{Fe}$ distances are equal ($c a .2 \cdot 60 \AA$). ${ }^{6}$ This structure does not correspond to pseudo- $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ in which there are two kinds of CO ligand (axial and equatorial) and, in contrast to the previously proposed mechanism, the equilibration of the twelve CO groups is brought about in a single step and does not necessitate the repeated concerted shifts of pairs of CO groups. Further rotation about the same axis (or either of the two other equivalent C_{2} axes) generates a third form (4) which superficially resembles (1) in that it contains two $\mathrm{Fe}(\mathrm{CO})_{3}$ units, an $\mathrm{Fe}(\mathrm{CO})_{4}$ unit, and a similar relationship between the $\mathrm{Fe}-\mathrm{Fe}$
distances: $\mathrm{Fe}(1)-\mathrm{Fe}(2)=\mathrm{Fe}(1)-\mathrm{Fe}(3)=c a .2 \cdot 60 \AA ; \mathrm{Fe}(2)-$ $\mathrm{Fe}(3)=2 \cdot 50 \AA$. However, in contrast to (1), which contains two edge-bridging CO groups, the two remaining CO ligands occupy positions above and below the Fe_{3} triangle.

Figure 3. Isomer with triple bridger $\left(C_{2}\right)$. $\mathrm{Fe}(1)\left(\mathrm{CO}^{1} \mathrm{CO}^{2}\right.$ $\left.\mathrm{CO}^{3} \mathrm{CO}^{4}\right)$; $\quad \mathrm{Fe}(2)\left(\mathrm{CO}_{T}^{5} \mathrm{CO}^{6} \mathrm{CO}^{7} \mathrm{CO}^{9} \mathrm{CO}_{\mathrm{T}}^{12} ; \quad \mathrm{Fe}(3) \mathrm{CO}_{\mathrm{T}}^{5} \mathrm{CO}^{8} \mathrm{CO}^{10}\right.$ $\mathrm{CO}^{11} \mathrm{CO}^{12}$).

Formally these CO groups may be regarded as bridging the iron atoms $\mathrm{Fe}(2)$ and $\mathrm{Fe}(3)$; however, in fact they are in close proximity to all three iron atoms (Figure 3). According to our model some displacement towards atoms $\mathrm{Fe}(2)$ and $\mathrm{Fe}(3)$ is expected. Further rotation by 30° regenerates (3) and then (1) and so on. The fluxional behaviour of $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{12}\right]$ may therefore be described as $(\mathbf{1}) \rightleftharpoons(\mathbf{3}) \rightleftharpoons(\mathbf{4}) \rightleftharpoons$ $(3) \rightleftharpoons(1)$.

Figure 4. Cubo-octahedral structure of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$.

Structures (3) and (4) not only follow naturally from the rotation of the Fe_{3} triangle within the CO-icosahedron but also provide a reasonable, alternative explanation of the i.r. spectrum of $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{12}\right]$ in solution. For a molecule (3) with D_{3} symmetry, six terminal carbonyl absorptions are i.r.active $\left(2 A_{2}+4 E\right)$ and of these, four ($4 E$) are expected to be broad. The band at $2103 \mathrm{~cm}^{-1}$ and the broad, unresolved terminal CO absorptions in the region $2000-2050 \mathrm{~cm}^{-1}$ may be attributed mainly to this isomer in solution (ca. 95\%), ${ }^{5}$ and the weak bands at 1867 and $1838 \mathrm{~cm}^{-1}$ to small amounts of isomer (1) and/or isomer (4) also present.

In our view, therefore, it is not necessary to invoke a multitude of isomers to account for the behaviour of $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{12}\right]$ in solution.

Carbonyl scrambling in $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ may also occur via the same D_{3} intermediate. Rearrangement of the CO polyhedron in these molecules from cubo-octahedral to icosahedral, which is equivalent to a change in molecular geometry from $D_{3 h}$ to D_{3}, equilibrates all the carbonyl groups in a single step and does not necessitate the formation of CO bridges $\left(C_{2 v}\right)$. The generation of the D_{3} form is not unreasonable; the predicted equivalent Os-Os distances of $2.65 \AA$ are close to the sum of the metallic radii $(2 \cdot 70 \AA)$. Formation of a bridged intermediate of symmetry $C_{2 v}$ is less reasonable; in this case one Os-Os distance must decrease to $c a .2 \cdot 50 \AA$ and the two others to ca. $2 \cdot 65 \AA$.

(1)

(3)

(2)

(4)

I thank my colleagues at Cambridge for many stimulating discussions and Mrs. A. Pickard for the Figures.
(Received, 12th April 1976; Com. 395.)

[^0]
[^0]: ${ }^{1}$ C. M. Wei and L. F. Dahl, J. Amer. Chem. Soc., 1966, 88, 1821; 1969, 91, 1351; C. M. Wei, G. R. Wilkins, and L. F. Dahl, ibid., 1967, 89, 4792; F. A. Cotton and J. M. Troup, ibid., 1974, 96, 4155.
 ${ }^{2}$ M. Poliakoff and J. Turner, Chem. Comm., 1970, 1005.
 ${ }^{3} \mathrm{~J}$. Miller, personal communication.
 ${ }^{4}$ F. A. Cotton and D. L. Munter, Inorg. Chim. Acta, 1974, 11, L9.
 ${ }^{5}$ B. F. G. Johnson, J. Lewis, and T. W. Matheson, J.C.S. Chem. Comm., 1974, 269.
 ${ }^{6}$ B. F. G. Johnson, J.C.S. Chem. Comm., 1976, 211.

