X-Ray Crystal Structure of Er₆Pb₃(SiO₄)₆, a Second Phase in the Lead–Erbium–Silicate System

By Gerald B. Ansell

(Research Department, Michaelson Laboratory, China Lake, California 93555)

and BARBARA M. WANKLYN

(Clarendon Laboratory, University of Oxford)

Summary A study of the three-component systems Er_2O_3 -PbO-SiO₂ has revealed the existence of two new phrases, $Er_6Pb_3(SiO_4)_6$ and $Er_4PbSi_5O_{17}$, and these have been prepared as single crystals; the crystal structure of $Er_6Pb_3(SiO_4)_6$ is described.

The preparation and crystallization of the $\mathrm{Er}_6\mathrm{Pb}_3(\mathrm{SiO}_4)_6$ and $\mathrm{Er}_4\mathrm{PbSi}_5\mathrm{O}_{17}$ phases have been described previously,¹ and the crystal structure of $\rm Er_4PbSi_5O_{17}$ has been reported.² We now report the crystal structure of $\rm Er_6Pb_3(SiO_4)_6.$

Crystal data: pink crystals, hexagonal, a = b = 9.642, c = 6.780 Å. Systematic absences for 00l are l = 2n + 1. The subsequent structure determination has shown the space-group to be $P6_3/m$ with one $\operatorname{Er}_6\operatorname{Pb}_3(\operatorname{SiO}_4)_6$ unit per unit cell. X-Ray intensity data were collected on an automated diffractometer using $Mo-K\alpha$ radiation and a scintillation counter. Full-matrix least-squares structure factor refinement using 364 absorption corrected reflections gives an R value of 0.044. The atomic co-ordinates with Er and SiO₄ tetrahedra occupy the 6h positions and the 4fpositions are partially occupied by three Pb atoms. The Figure shows the packing of the metals and SiO_4 tetrahedra.

FIGURE. The arrangement of Pb, Er, and SiO₄ tetrahedra with the unit cell in $\text{Er}_6\text{Pb}_3(\text{SiO}_4)_6$.

e.s.d.'s are given in the Table. The structure is 'apatitelike' but differs in structure and constitution from the other known 'apatite- and oxyapatite-like' lead silicate compounds.³

TABLE

Atomic fractional co-ordinates ($\times 10^4$) with e.s.d.'s in parentheses.

				Site
	x	y	z	symmetry
Er	2349(1)	2486(1)	7500	6 <i>h</i>
Pb	6667`́	3333	-44(3)	4f
Si	4175(8)	3883(9)	25	6h
O(1)	3580(23)	5156(24)	25	6h
O(2)	6125(23)	4338(23)	25	6h
O(3)	3703(19)	2779(19)	499(28)	12i

The six-fold Er occupancy and partial Pb occupancy correspond to Gd(1) and Gd(2) in the 'apatite-like' compound, $7Gd_2O_3 \cdot 9SiO_2$.⁴ In $Er_6Pb_3(SiO_4)_6$ there is no evidence for the 'free O' being distributed at the two-fold positions on the 6_3 axis as occurs in $7Gd_2O_3 \cdot 9SiO_2$. The Er ions are surrounded by five O atoms from neighbouring SiO₄ tetrahedra with Er–O distances ranging from 2.34 to 2.62 ± 0.01 Å, while the Pb ions are surrounded by nine O atoms with distances ranging from 2.30 to 2.66 ± 0.01 Å. Within the SiO_4 tetrahedra Si-O distances range from 1.59 to 1.64 ± 0.01 Å.

(Received, 13th April 1976; Com. 414.)

 ¹ B. M. Wanklyn, F. R. Wondre, G. B. Ansell, and W. Davison, J. Materials Sci., 1975, 10, 1494.
² G. B. Ansell and B. M. Wanklyn, J.C.S. Chem. Comm., 1975, 794.
³ L. Merker and H. Wondratschek, Fortschr. Mineral, 1957, 35, 45; L. Merker and H. Wondratschek, Z. Krist., 1957, 109, 110; L. Merker and H. Wondratschek, ibid., 1960, 113, 475; J. Ito, J. Amer. Mineralogist, 1968, 53, 890; H. P. Rooksby, J. Soc. Glass Technol., 1939, 27, 76; F. Zambonini and H. Ferrari, Rend. Accad. Lancei, 1928, 7, 283; A. Ferrari, Gazzetta, 1940, 770, 457.

⁴ Y. I. Smolin and Y. F. Shepelev, Izvest. Akad. Nauk. S.S.S.R. Neorg. Mater., 1969, 1829.