Biosynthesis of [6]-Gingerol, Pungent Principle of Zingiber Officinale

By PHILLIP DENNIFF and DONALD A. WHITING*

(Department of Chemistry, The University, Nottingham NG7 2RD)

Summary Evidence is adduced for a scheme of biosynthesis for (S)-(+)-[6]-gingerol in Zingiber officinale Roscoe, in which dihydroferulate is built up from phenylalanine and participates in a new example of a 'biological Claisen reaction' with malonate and hexanoate; the β -diketone product is then reduced to [6]-gingerol.

GINGER, the rhizome of *Zingiber officinale* Roscoe (Zingiberaceae), has been valued since antiquity for its flavour and pungent qualities. Although the oleoresin containing the pungent principles has been subject to many chemical investigations over more than a century, the sensitive

organoleptic compounds have only recently been identified. The major constituent is (S)-(+)-[6]-gingerol (1),¹ accompanied in the plant by a series of homologues^{1,2} e.g. [8]- and [10]-gingerols (2) and (3), and relatives with simple functional variances.

The biosynthesis of [6]-gingerol appears on general inspection to involve cinnamate-acetate condensations;

various assembly routes are possible. The elucidation of the pathway is not only of interest *per se* but in connection with the many natural phenolics with related biogenesis (*e.g.* stilbenes, diarylheptanoids,³ benzophenones, *etc.*), and here we report our results on this problem.

SCHEME 1. Degradation of [6]-gingerol. *Reagents:* i, KMnO₄; ii, heat, Cu, quinoline; iii, OH⁻; iv, Ag₂O; v, Pb(OAc)₄, LiCl; vi, KI, I₂, OH⁻.

Cultivated ginger plants[†] were employed in standard experiments with labelled precursors; the latter (Tables 1 and 2) were wick-fed to shoots during the period of rhizome extension. (S)-(+)-[6]-Gingerol was isolated and purified by crystallisation of its *O*-methyl ether, which, when

				Administration	of labelled p	recursor	s to <i>Z. o</i>	fficinale.			
	Incorporation				Fractional distribution of label						
				-		1	2 3		4	5	6-10
Precursor						ArCH2.	CH ₂ ·CO			CH(OH)	C ₅ H ₁₁
						<u> </u>			-		• ••
(\pm) -[1-14C]-Phe				0.009	$1.16 imes 10^{7}$	0.8	3 9		0	0	0
L-[U-14C]-Phe			••	0.006	$1{\cdot}42\! imes\!10^{8}$	0.9	99		0	0	0
[2-14C]-MeCO ₂ Na		••		0.011	$1{\cdot}84\! imes\!10^{6}$	0.0)5		0.49	0.03	0.43
• • •						<u> </u>		~~~~~			
[1-14C]-MeCO ₂ Na				0.002	$9\cdot94 imes10^6$			0.29		0.46	0.26
[1-14C]-n-C _x H ₁₁ ·CC),Na			0.017	$2{\cdot}22 imes10^{6}$			0.30		0.70	0
[1-14C]-n-C,H,, CH	ĨŌ			<10-7							

TABLE 1

[†] We thank the Tropical Products Institute for viable Carribean ginger roots.

appropriate, was degraded using the reactions of Scheme 1 to establish labelled atom distribution. The results are listed in the Tables.

 $(L)-[U^{-14}C]$ - and $(\pm)-[1^{-14}C]$ -Phenylalanine are both incorporated into [6]-gingerol at levels considered significant in experiments with whole plants; degradations show the label(s) to be contained within the Ar-C_a section of the molecule. [3H]-p-Coumaric acid (4) and [3H]ferulic acid3 (5) were both better precursors than Phe. The (relatively) high incorporation of ferulic acid may reflect an experimental difference; only actively developing rhizomes were fed and harvested in this case. [3H]Dihydro-p-coumaric acid was a poor precursor, but [3H]dihydroferulic acid (6) was utilised at an acceptable level. With variable product yields, dilution is a more reliable guide to precursor involvement than incorporation; thus dihydroferulic acid is diluted much less than p-coumaric acid although the incorporations do not differ greatly. It therefore appears that the reduction of the double bond in ferulic acid is a relatively early stage (preceding further condensations) in gingerol biosynthesis; the stereochemistry of this reaction is under examination.

TABLE 2

Administration of labelled precursors to Z. officinale

Precursor	Incorpora- tion	Dilution
[⁸ H]Dihydro- <i>p</i> -coumaric acid	0.004	7.08×10^{4}
^a H ₁ -p-Coumaric acid (4)	0.062	2.44×10^{4}
^{[*} H]Ferulic acid [*] (5)	0.249	5.94×10
[³ H]Dihydroferulic acid (6)	0.033	$6.88 imes10^{2}$

 In this experiment only developing, not total, rhizomes were used.

Both sodium [1-14C]- and [2-14C]-acetate were incorporated into [6]-gingerol. With methyl labelled acetate very little radioactivity was found in the Ar-C₃ unit or at C-5, but the majority was at C-4 and C-6-C-10. Appreciable decarboxylation and consequent label scrambling had occurred with carboxy-labelled acetate since the Ar-C4 fragment contained a high fraction of the isotope although the major activity was at C-5 as expected. C-4-C-10 are thus of acetate-malonate origin. Their mode of assembly

t For a discussion of related cases see ref. 3 and refs. cited there.

¹ D. W. Connell and M. D. Sutherland, Austral. J. Chem., 1969, 22, 1033.

² M. Miyamoto, M. Shinohara, and T. Murata, *Chem. Pharm. Bull. (Japan)*, 1972, 20, 2291; Y. Masada, T. Inoue, K. Hashimoto, M. Fujioka, and K. Shiraki, *J. Pharm. Soc. Japan*, 1973, 93, 318; Y. Masada, T. Inoue, K. Hashimoto, M. Fujioka, and C. Uchino, ibid., 1974, 94, 735.

* P. J. Roughley and D. A. Whiting, J.C.S. Perkin I, 1973, 2379.

is indicated by the incorporation of sodium[1-14C]hexanoate. Although some labelling of the Ar-C₄ unit resulted, probably via decarboxylation and incorporation of CO₂ (cf. the very similar result with Me¹⁴CO₂Na), the bulk of the label appears in the C-5-C-10 unit, with all the activity in this section located at C-5, *i.e.* no label scrambling with the part of the molecule believed to be derived from hexanoate.

Some guidelines to the biosynthesis of [6]-gingerol now appear from these results and are shown in Scheme 2. In essence, Phe is elaborated to ferulic acid through p-coumaric acid. Reduction to dihydroferulic acid ensues, followed by condensation with a malonate and an hexa-

SCHEME 2. Proposed biosynthetic route to [6]-gingerol.

noate residue (preformed from acetate-malonate), in an undetermined order, via the 'biological Claisen reaction.' Such reactions are well known, but their scope is now seen to include the present case in which an acetate-malonate condenses with two other acids neither of which is a second acetate-malonate. We know of no other demonstrated example of this type.[‡] The product [6]-gingerdione (7) would then be reduced at C-5 to give natural [6]-gingerol (1). Direct production of the β -ketol from malonate condensations with dihydroferulate and hexanal was excluded by the non-incorporation of [1-14C]hexanal.

(Received, 22nd June 1976; Com. 700.)