Phosphorescence of Medium-sized Cycloalkanones

By NIEN-CHU C. YANG,* DAVID M. SHOLD, and CHARLES V. NEYWICK (Department of Chemistry, University of Chicago, Chicago, Illinois 60637)

Summary	Compared	with	other	saturated	ketones,
medium-s	sized cycloa	lkanon	es exhil	bit phosph	orescence
of unusua	ally high qu	antum	efficienc	ies.	

MEDIUM-SIZED cycloalkanones $(C_8 - C_{11})$ exist in unusual conformations which have a profound effect on their chemical behaviour. N.m.r. spectroscopy of these ketones over a wide range of temperature indicates that transannular interaction between the carbonyl and the appropriate methylene group across the ring may be important from ambient temperature down to -160 °C.¹ Alkanones undergo Norrish Type I, Type II, and related processes photochemically, while medium-sized cycloalkanones may also undergo transannular hydrogen abstractions to form bicyclic alcohols.² The predominant photochemical reaction of cyclodecanone is the formation of 9-decalols which occurs mainly from its ${}^{3}n,\pi^{*}$ state.³ In order to achieve a better understanding of the behaviour of photoexcited medium-sized cycloalkanones, we investigated the influence of structure on the phosphorescence lifetimes and quantum yields of alicyclic and acyclic ketones and found that medium-sized cycloalkanones exhibit unusually high quantum yields of phosphorescence at 77 K.

20 cyclic and acyclic ketones were examined. The phosphorescence quantum yields (ϕ_p) and lifetimes (τ_p) of these ketones (0.01-0.5 M) in ether-isopentane-alcohol glasses were measured at 77 K on a Perkin-Elmer MPF-4 Corrected Spectrofluorimeter with phosphorescence attachment. The rates of phosphorescence, k_p , and non-radiative decay, k_{-t} , were calculated (Table). Although k_p is constant within a factor of 2-3, k_{-t} depends dramatically on the structure of these ketones. While cyclopentanone, cyclohexanone, and the linear ketones have non-radiative rates of 700-1600 s⁻¹, the medium-sized cycloalkanones have much smaller rates, ranging from 130 to 250 s⁻¹. In other words, the high ϕ_p of medium-sized cycloalkanones is due to their anomalously low k_{-t} . The predominant mode of decay of most photoexcited aliphatic ketones at 300 K

is photochemical transformation which is effectively 'frozen out' at very low temperatures. At 77 K k_{-t} may consist solely of physical deactivation. The physical nonradiative decay of the ${}^{3}n,\pi^{*}$ state to the ground state of ketones is governed by the Franck-Condon factor which is related to the geometry of the ${}^{3}n,\pi^{*}$ state and that of the vibrationally excited ground state.⁴ It is interesting that

		TABLE			
	$\lambda_{max}b$				
Ketone ^a	/nm	$ au/\mathrm{ms^{c}}$	$\phi_{p}{}^{d}$	k _p e	k_{-t} f
Cyclopentanone	460	1.2	0.11	92	740
Cyclohexanone	480	0.9	0.064	68	1500
Cycloheptanone	440	$2 \cdot 7$	0.33	120	250
Cyclooctanone	435	$3 \cdot 7$	0.42	110	200
Cyclononanone	430	$4 \cdot 3$	0.41	95	140
Cyclodecanone	435	$4 \cdot 3$	0.44	100	130
Cycloundecanone	440	$5 \cdot 0$	0.36	72	130
Cyclododecanone	445	$3 \cdot 1$	0.37	120	200
Cyclotridecanone	440	4.7	0.31	66	150
Cyclopentade-	440	4.4	0.30	67	160
canone					
Acetone	460	0.6, 0.6g	0.042,	71	1600
		0·4, i 0·33j	0.043,h 0.03i		
Pentan-2-one	460	0.8	0.096	120	1100
Pentan-3-one	460	$1.1, 1.26^{g}$	0.10	91	820
Hexan-2-one	460	0.7	0.093	130	1300
Hexan-3-one	460	$1 \cdot 0$	0.079	79	920
Heptan-4-one	460	$1 \cdot 0$	0.010	70	93 0
Octan-2-one	450	1.0	0.13	130	870
Octan-4-one	460	1.0	0.067	67	930
Adamatan-2-one			$<\!0.005$		
2,2,4,4-Tetrame-	460	6·7, 8·6g	0.29, 0.891	43	110
thylpentan-3-one		·			

^a All values are for phosphorescence only. ^b ± 5 nm. ^c ± 0.1 ms. ^d Based on the phosphorescence of benzophenone, $\phi_p = 0.84$, as the secondary standard, S. L. Murov, Ph.D. Thesis, University of Chicago, 1967. ^e Calculated from $k_p = \phi_p \tau^{-1}$. ^t Calculated from $k_{-1} = \tau_t^{-1} - k_p$. ^e D. S. McClure, J. Chem. Phys., 1949, 17, 905. ^b E. H. Gilmore, G. E. Gibson, and D. S. McClure, *ibid.*, 1952, 20, 829; 1955, 23, 399. ⁱ R. F. Borkman and D. R. Kearns, *ibid.*, 1966, 44, 945. ⁱ M. O'Sullivan and A. C. Testa, J. Amer. Chem. Soc., 1970, 92, 258.

the phosphorescence maxima of medium-sized cycloalkanones occur at considerably shorter wavelengths than those of other saturated ketones, which may indicate that the geometry of the ${}^{3}n,\pi^{*}$ state of these cycloalkanones resembles more closely that of the lower vibrational levels of the ground state, resulting in a poorer Franck-Condon factor for non-radiative decay.† The unusual conformations of medium-sized cycloalkanones apparently alter the geometry of the excited carbonyl group, causing the dramatic increase in ϕ_p .

It is interesting that the k_p and k_{-t} values of 2,2,4,4tetramethylpentan-3-one are similar to those of the mediumsized cycloalkanones, but ϕ_p (0.29) is appreciably less than that reported in the literature.⁵ Our results suggest that substitution of α -H by Me is not the only important factor in determining the rate k_{-t} for ketones.⁵ On the other hand, admantanone exhibits no detectable phosphorescence. In view of its photochemical stability at room temperature⁶ this result must be attributed to its effective non-radiative decay.

The authors thank the National Science Foundation and the National Institute of General Medical Sciences for the support of this work.

(Received, 4th June 1976; Com. 643.)

[†] Medium-sized cycloalkanones also absorb at longer wavelength and fluoresce at shorter wavelength than other saturated ketones, *e.g.*, cyclodecanone exhibits a λ_{max} (absorption) 290 nm and λ_{max} (fluorescence) 390 nm, while values for acetone are 278 and 415 nm, respectively.

¹ F. A. L. Anet, A. K. Cheng, and J. Krane, J. Amer. Chem. Soc., 1973, 95, 7877; F. A. L. Anet, Fortschr. Chem. Forsch., 1974, 45, 169.

² R. G. W. Norrish, *Trans. Faraday Soc.*, 1937, **33**, 1521; M. Barnard and N. C. Yang, *Proc. Chem. Soc.*, 1958, 302; N. C. Yang, 'Reactivity of the Photoexcited Organic Molecules,' Wiley-Interscience, New York, 1967, pp. 145—151. ³ N. C. Yang, C. V. Neywick, and I. Bilyk, unpublished results.

4 W. Siebrand, J. Chem. Phys., 1967, 46, 440.

⁵ M. O'Sullivan and A. C. Testa, J. Amer. Chem. Soc., 1972, 92, 258. ⁶ T. Sasaki, S. Eguchi, and M. Mizutani, Synth. Comm., 1973, 3, 369.