A Bis(acetylene)platinum(0) Complex; Crystal and Molecular Structures of $\left[\mathrm{Pt}\left(\mathrm{PhC}_{2} \mathrm{Ph}\right)_{2}\right]$ and $\left[\mathrm{Pt}_{2}\left(\mathrm{PMe}_{3}\right)_{2}\left(\mathrm{PhC}_{2} \mathrm{Ph}\right)_{2}\right]$

By Michael Green, David M. Grove, Judith A. K. Howard, John L. Spencer, and F. Gordon A. Stone* (Department of Inorganic Chemistry, The University, Bristol BS8 1TS)

Summary Reaction of $\left[\mathrm{Pt}\left(1,5-\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right]$ with diphenylacetylene affords $\left[\mathrm{Pt}\left(\mathrm{PhC}_{2} \mathrm{Ph}\right)_{2}\right]$, which reacts with trimethylphosphine to give $\left[\mathrm{Pt}_{2}\left(\mathrm{PMe}_{3}\right)_{2}\left(\mathrm{PhC}_{2} \mathrm{Ph}\right)_{2}\right]$; the structural identity of both new complexes was established by single-crystal X-ray diffraction.

The discovery of tris(olefin) complexes of palladium and platinum ${ }^{1}$ led to the interesting possibility that related bis(olefin) and bis(acetylene) complexes of these metals could also be prepared, particularly as fourteen-electron two-co-ordinate complexes of the type $\mathrm{ML}_{2}\left(\mathrm{M}=\mathrm{Pd},{ }^{2} \mathrm{Pt} ;{ }^{3}\right.$ $\mathrm{L}=$ bulky tertiary phosphine) have been well characterised. As part of a study ${ }^{4}$ of the chemistry of bis(cyclo-octa-1,5-diene)-platinum and -palladium, we have characterised bis(diphenylacetylene)platinum, a molecule with apparently significant synthetic potential.

Reaction [room temperature, in light petroleum (b.p. $\left.30-40^{\circ} \mathrm{C}\right)$] of an excess of diphenylacetylene with [$\mathrm{Pt}(\mathrm{l}, 5-$ $\left.\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}$] afforded (Scheme) complex (I) as pale yellow crystals (from diethyl ether, $-40^{\circ} \mathrm{C}$). Elemental analyses and spectroscopy [i.r.: $\nu_{\mathrm{C}=\mathrm{C}} 1881 \mathrm{~cm}^{-1}$; ${ }^{13} \mathrm{C}$ n.m.r. (measured on a ${ }^{13} \mathrm{C}$ enriched sample in CDCl_{3} at $-25^{\circ} \mathrm{C}$): acetylenic carbon resonance at 124.8 p.p.m., $J(\mathrm{PtC}) 311 \mathrm{~Hz}]$ indicated that (I) was possibly a bis(acetylene) metal complex. The structure was established by a single crystal X-ray diffraction study.

Crystal data: monoclinic, $P 2 / n, a=13 \cdot 163(5), \quad b=$ $6.062(2), \quad c=14.354(7) \AA ; \beta=115 \cdot 04(3)^{\circ} ; Z=2 . \quad R$ is currently 0.039 for 3423 independent absorption-corrected ($\mu=69.5 \mathrm{~cm}^{-1}$) intensities with $I \geqslant 2.0 \sigma(I)$ collected on a Syntex $\mathrm{P} 2_{1}$ four-circle diffractometer at 200 K in the range $2 \cdot 9 \leqslant 2 \theta \leqslant 65^{\circ}$.

Figure 1. Molecular structure of $\left[\mathrm{Pt}\left(\mathrm{PhC}_{2} \mathrm{Ph}\right)_{2}\right]$.

The molecular structure (Figure 1) shows that the coordination at the platinum atom is essentially tetrahedral
$\left(D_{\mathbf{2 d}}\right),{ }^{5}$ the angle between the two $\stackrel{\Gamma}{\mathrm{Pt} \cdot \mathrm{C}=\mathrm{C}}$ planes being 82°.
The platinum atom lies on a crystallographic two-fold axis of rotation, at a mean distance of $2 \cdot 025(5) \AA$ from the two acetylenic carbon atoms $[\mathrm{C}(1)-\mathrm{C}(2)=1 \cdot 280(6) \AA]$, and is effectively coplanar with all carbon atoms of the $\mathrm{PhC}_{2} \mathrm{Ph}$ ligand (maximum deviation from the mean PtC_{14} plane is $0 \cdot 3 \AA$). Co-ordination of the acetylene to the metal shows the expected bending of the phenyl rings away from the platinum atom $\left[\angle \mathrm{PhC} \cdots \mathrm{C}(\right.$ mean $\left.)=153^{\circ}\right]$.

Treatment of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ with acetylenic-diols $\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{C}(\mathrm{OH})$ $\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{R}^{1} \mathrm{R}^{2}$ in ethanol was reported ${ }^{6}$ to give complexes [Pt(acetylene) $)_{2}$] for which planar hydrogen-bonded ring structures were proposed. From comparison of the $\nu_{\mathrm{C}=\mathrm{C}}$ stretching frequencies with (I) it seemed likely that these complexes are also pseudo-tetrahedral 14 -electron two-co-ordinate complexes. \dagger

Complex (I) appears to function as a ready source of polynuclear platinum species on treatment with phosphines or isocyanides. Reaction with 1 mol . equiv. of trimethylphosphine ($\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$) gave orange-yellow crystals (II) ($v_{\mathrm{C} \equiv \mathrm{C}} 1851 \mathrm{~cm}^{-1}$). Examination of the ${ }^{31} \mathrm{P}$ n.m.r. spectrum $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right.$, resonance at 20.4 p.p.m. (rel. to external $\left.\mathrm{H}_{3} \mathrm{PO}_{4}\right)$, $\left.J\left(\mathrm{PPt}^{1}\right) 3530 \mathrm{~Hz}, J\left(\mathrm{PPt}^{2}\right) 44 \mathrm{~Hz}\right]$ indicated that the complex was dinuclear. This was confirmed by X-ray crystallography.

Crystal data: monoclinic, $P 2_{1} / c, a=12.963(3), \quad b=$ $16 \cdot 486(8), c=17 \cdot 498(10) \AA ; \beta=116.04(4)^{\circ} ; Z=4 . \quad R$ is currently 0.066 for a limited data set collected in the range $2 \theta \leqslant 50^{\circ}$ at room temperature. 2158 absorption-corrected ($\mu=88.4 \mathrm{~cm}^{-1}$) intensities with $I \geqslant 2.0 \sigma(I)$ were used to solve and refine the structure shown in Figure 2.

In the binuclear complex (II) one platinum atom carries both PMe_{3} ligands, the diphenylacetylene ligands showing different co-ordination modes. Thus, $\mathrm{Ph}(3) \mathrm{C}(3) \mathrm{C}(4) \mathrm{Ph}(4)$ lies terminally to, and coplanar with $\mathrm{Pt}(2)$, its geometrical features closely resembling those of the $\mathrm{PhC}_{2} \mathrm{Ph}$ ligand in complex (I) $[\mathrm{C}(3)-\mathrm{C}(4)=\mathrm{I} \cdot 26(5) \AA$; $\mathrm{Pt}-\mathrm{C}($ mean $)=2 \cdot 01(3)$
\AA, and $\left.\angle \mathrm{C}-\mathrm{C} \equiv \mathrm{C}=153^{\circ}\right]$, whereas $\mathrm{Ph}(5) \mathrm{C}(5) \mathrm{C}(6) \mathrm{Ph}(6)$ coordinates to both metal atoms in a bridging mode, lying almost perpendicular to the $\mathrm{Pt}-\mathrm{Pt}$ vector, with $\mathrm{C}(5)$ and $\mathrm{C}(6)$ approximately equidistant from the two platinum atoms $[\mathrm{Pt}-\mathrm{C} \quad($ mean $)=2 \cdot 10(3) \AA]$. The phenyl rings $[\mathrm{Ph}(5)$ and $\mathrm{Ph}(6)]$ are no longer coplanar, but twisted at 60°

Figure 2. Molecular structure of $\left[\mathrm{Pt}_{2}\left(\mathrm{PhC}_{2} \mathrm{Ph}\right)_{2}\left(\mathrm{Me}_{3} \mathrm{P}\right)_{\mathbf{2}}\right]$.
and 48°, respectively, to the $\mathrm{C}(5)-\mathrm{C}(6)$ bond (planes are 80° to each other). This fact, and the lengthening of this bond to $1 \cdot 36(5) \AA$ suggests a more pronounced rehybridization of these central carbon atoms in this bridging mode, than when terminally bonded. The Pt-Pt separation [2•890(2) \AA] is larger than that found in most bridged $\mathrm{Pt}-\mathrm{Pt}$ complexes.

With t-butyl isocyanide, (I) affords a tetranuclear cluster $\left[\mathrm{Pt}_{4}\left(\mathrm{PhC}_{2} \mathrm{Ph}\right)_{3}(\mathrm{Bu} \mathrm{NC})_{4}\right]$ (III) which is not isostructural with the recently described Ni_{4} clusters $\left[\mathrm{Ni}_{4}\left(\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)_{3}{ }^{-}\right.$ $\left.(\mathrm{CO})_{4}\right]^{7}$ and $\left[\mathrm{Ni}_{4}\left(\mathrm{PhC}_{2} \mathrm{Ph}\right)_{3}(\mathrm{Bu} \mathrm{NC})_{4}\right]^{8}$

We thank the S.R.C. for support and Mr. J. Z. Nyathi for discussions.
(Received, 26th July 1976; Com. 846.)
\dagger Recently confirmed by X-ray crystallography (R. J. Dubey, Acta. Cryst., 1975, B13, 1864).
${ }^{1}$ M. Green, J. A. K. Howard, J. L. Spencer, and F. G. A. Stone, J.C.S. Chem. Comm., 1975, 449.
${ }^{2}$ A. Immirzi and A. Musco, J.C.S. Chem. Comm., 1974, 400; M. Matsumoto, H. Yoshioka, K. Nakatsu, T. Yoshida, and S. Otsuka, J. Amer. Chem. Soc., 1974, 96, 3322.
${ }^{3}$ A. Immirzi, A. Musco, P. Zambelli, and G. Carturan, Inorg. Chim. Acta, 1975, 13, L13.
${ }^{4}$ M. Green, J. A. K. Howard, A. Laguna, M. Murray, J. L. Spencer, and F. G. A. Stone, J.C.S. Chem. Comm., 1975, 451 ; G. K. Barker, M. Green, J. A. K. Howard, J. L. Spencer, and F. G. A. Stone, J. Amer. Chem. Soc., 1976, 98, 3373.
${ }^{5}$ N. Rösch and R. Hoffmann, Inorg. Chem., 1974, 13, 2656.
${ }^{6}$ F. D. Rochon and T. Theophanides, Canad. J. Chem., 1972, 50, 1325.
${ }^{7}$ J. L. Davidson, M. Green, F. G. A. Stone, and A. J. Welch, J. Amer. Chem. Soc., 1975, 97, 7492.
${ }^{8}$ M. G. Thomas, E. L. Muetterties, R. O. Day, and V. W. Day, J. Amer. Chem. Soc., 1976, 98, 4645.

