The Role of C-Chlorocarbenemetal Complexes in Carbene– and Carbyne–Metal Complex Chemistry; Experiments with $[Cr(CO)_5{C(Cl)NMe_2}]$ and $[Cr(CO)_5(\equiv CNMe_2)]^+$

By ANGUS J. HARTSHORN and MICHAEL F. LAPPERT* (School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary Low temperature reaction of $[Cr(CO)_5 \{C(Cl)-NMe_2\}]$, (I), with (a) AgQ yields $[Cr(CO)_5 (\equiv CNMe_2]^+Q^- (Q = BF_4, PF_6, or ClO_4), (II), (b) BCl_3 gives (II, Q = BCl_4), (c) PPh_3 affords cis-[Cr(CO)_4 (PPh_3) \{C(Cl)NMe_2\}], and (d) KCN gives <math>[Cr(CO)_5 \{C(CN)NMe_2\}]$; the latter

is also obtained from (II, $Q = BF_4$), which additionally with LiNMe₂ furnishes $[Cr(CO)_5 \{C(NMe_2)_2\}]$ and with PEt₃ or $[Bu_4N]^+I^-$ the carbyne complexes *trans*- $[Cr(CO)_4-(PEt_3)(\equiv CNMe_2)]^+[BF_4]^-$ or *trans*- $[Cr(CO)_4I(\equiv CNMe_2)]$.

RECENTLY we described some C-chlorocarbenemetal complexes, including [Cr(CO)₅{C(Cl)NMe₂}],¹ (I), of interest in part because of their possible role as intermediates^{1,2} in Fischer's carbynemetal synthesis. The latter employs a C-alkoxycarbenemetal precursor and a boron or related halide.³ This communication focuses on compound (I) in order to illustrate further the significance of C-chlorocarbenemetal derivatives in this area of chemistry (see Scheme).

We now report (i) a new route to carbynemetal complexes from a C-chlorocarbene complex and Ag⁺, (ii) a carbynefunctionalised carbenemetal complexes (V) and (VIII) {also prepared independently from $Na_2[Cr(CO)_5]$ and $[(Me_2N)_2CC1]C1 \}.^4$

The carbynechromium cationic complexes (II) were obtained in high yields (ca. 80%). The tetrafluoroborate and hexafluorophosphate are soluble in acetone and stable in this solvent for at least 5 h at -30 °C, and can be stored as solids at this temperature indefinitely. Decomposition in solution at higher temperature is rapid; $t_1 = ca$. 2 min at +30 °C from ¹H n.m.r. spectra in (CD₃)₂CO.

Compounds (II) and (IV)-(VIII) gave satisfactory

SCHEME. i, $[Me_2NCCl_2]Cl$, ref. 1; ii, BCl_3 , PhMe, -20 °C; iii, PPh₃, $h\nu$, -10 °C; iv, (a) AgQ,PhMe, -30°C, (b) Me_2CO ; v, KCN,Me₂CO; v, KCN,KCN,Me₂CO; v, KCN,KCN,KCN,Me

metal-containing cation (II), showing for the first time no stabilising groups trans- to the carbyne species, (iii) a carbynemetal tetrachloroborate (III), obtained from (I) and BCl₃ and hence a further likely intermediate in the Fischer synthesis, (iv) some reactions of the C-chlorocarbenemetal complex (I) with nucleophiles, yielding to displacement of either CO to give (IV), or Cl⁻ from the liganded -C(Cl)NMe₂ to give the first C-cyanocarbenemetal complex, (V), and (v)some reactions of the cationic carbynemetal complex (II) with nucleophiles leading to loss of CO and formation of the trans-substitution product, (VI) or (VII), or to new C-

analytical and spectroscopic data. Compound (III) was insufficiently stable for analysis and was identified by the similarity of the i.r. spectrum to that of (II) and strong absorption at ca. 660 cm^{-1} appropriate for $[BCl_4]^{-}$. ¹H n.m.r. spectra conveniently distinguish carbene- from carbyne-metal complexes, especially from respectively the nonequivalence or equivalence of the NMe, protons.

We thank S.R.C. for support.

(Received, 16th July 1976; Com. 810.)

- ¹ A. J. Hartshorn, M. F. Lappert, and K. Turner, J.C.S. Chem. Comm., 1975, 929.
- ² E. O. Fischer, W. Kleine, and F. R. Kreissl, J. Organometallic Chem., 1976, **107**, C23. ³ Cf. E. O. Fischer, Adv. Organometallic Chem., 1976, **14**, 1, and references therein.
- ⁴ B. Çetinkaya, unpublished results.