Synthesis of $(PPh_3)_2RhH(SB_{10}H_{10})$ and $2-(L_2IrHCl)-1-SB_nH_{n-1}$ (L = PPh₃ or AsPh₃) by Oxidative Addition of $7-SB_{10}H_{11}^-$ and closo-SB_nH_n (n = 9 or 11) to Rhodium and Iridium Phosphines

By DAVID A. THOMPSON and RALPH W. RUDOLPH*

(Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109)

Summary Oxidative addition of $7-SB_{10}H_{11}^{-1}$ to $(PPh_3)_3$ -RhCl in alcohol results in formation of a stable hydride complex formulated as $(PPh_3)_2RhH(SB_{10}H_{10})$ which functions as a hydrogenation catalyst; the reaction of L_2IrCl ($L = PPh_3$ or AsPh₃) with *closo*-1-SB_9H_9 or *closo*-1-SB_{11}H_{11} results in 2-(L_2IrHCl)-1-SB_nH_{n-1} (n =9 or 11) which contains a B-Ir exodeltahedral bond.

THE oxidative addition of exopolyhedral B-H and B-Br bonds in carbaboranes and boranes to Ir, Rh, Pt, and Fe complexes forms borane^{1,2} and carbaborane^{2,3} complexes containing a metal-boron, two-centre, two-electron bond. Similar oxidative addition reactions provide novel π bonded rhodium carbaborane complexes capable of the catalytic hydrogenation of olefins.⁴ We also have recently demonstrated the oxidative addition of several *closo*- and *nido*-thiaboranes to transition metals and report three new Ir-thiaboranes and a Rh-thiaborane which is a hydrogenation catalyst. The reaction of L₂IrCl⁵ (L = PPh₃ or AsPh₃) in cyclohexane with closo-1-SB_nH_n (n = 9 or 11)⁶ under nitrogen results in high yields (>70%) of yellow crystalline compounds formulated by elemental analysis† and spectral data as 2-(L₂IrHCl)-1-SB₉H₈ (I), and 2-[(PPh₃)₂IrHCl]-1-SB₁₁H₁₀ (II). This new class of metallothiaboranes is proposed to contain an exodeltahedral⁷ metal bonded to a single boron atom of the closo framework (Figure). The ¹H n.m.r. spectra of (I) and (II) in CDCl₃ show a 1:2:1 hydride triplet at τ 28·3 (J_{P-Ir-H} 14·7 Hz) and 27·3 (J_{P-Ir-H} 14·5 Hz), respectively. ν (Ir-H) occurs at 2199 and 2191 cm⁻¹, respectively, for (I) and (II). These data, consistent with other iridium phosphine complexes, favour formulation of (I) and (II) as trigonal bipyramidal compounds with *trans* H-Ir-Cl bonding.⁸ The triphenylarsine derivative of (I) shows a hydride singlet at τ 30·4 and ν (Ir-H) at 2196 cm⁻¹.

On the basis of the broad $32 \cdot 1 \text{ MHz} {}^{11}\text{B} \text{ n.m.r.}$ spectra of (I) and (II) the site of the Ir-B bond remains equivocal.

† Satisfactory elemental analyses were obtained for (I), (II), and (III). Mass spectra of (I) show thiaborane resulting from cleavage of the Ir-B bond.

However, the site of addition was ascertained by reaction with 6,7,8,9,10-D₅-1-SB₉H₄ which gave only a ν (Ir-H) i.r. absorption and no evidence of $\nu(\mbox{Ir-D}).$ This observation is indicative of oxidative addition at the undeuteriated belt of 4 boron atoms adjacent to the sulphur heteroatom (sites 2,3,4,5 Figure A).

FIGURE. Proposed structures for compounds (I) and (III). $(\underline{A}) = \frac{2}{2} - [(PPh_{3})_{2} IrHCl] - 1 - SB_{9}H_{8}; \quad (B) = \frac{1}{2}, 2 - (PPh_{3})_{2} - 2 - H - 2, 1 - Rh - 1$ SB10H10.

Similar reactions of 6-Br-1-SB₉H₈ and the linked thiaborane 2,2'-(SB₉H₈)₂ both appear to result in addition to the B-H bond, but the products are less stable in solution than (I) or (II) and they readily regenerate 6-Br-1-SB₉H₈ or $2,2'-(SB_9H_8)_2$ respectively.⁹ Only after several weeks in CDCl_3 do (I) and (II) slowly form SB_9H_9 or $\text{SB}_{11}\text{H}_{11}$. Attempted inhibition by 10 mole % of galvinoxyl results in no significant decrease in the yield of (I) suggesting no involvement of a radical-chain mechanism.

The new rhodium thiaborane complex, isolated from the reaction of $({\rm PPh}_3)_3{\rm RhCl}$ and ${\rm SB}_{10}{\rm H}_{11}^-$ in >90% yield from

refluxing ethanol and formulated as (PPh₃)₂RhHSB₁₀H₁₀ (III), has been shown to function as a homogeneous isomerization and hydrogenation catalyst.

The air-stable yellow crystals of (III) obtained by recrystallization from CH2Cl2-EtOH under nitrogen show no evidence of decomposition in air as a solid but do slowly darken to a red solution in methylene chloride or benzene when exposed to air. The ν (Rh–H) absorption at 2080 cm⁻¹ and 100 MHz ¹H n.m.r. signal at τ 17.2 (J_{P-Rb-H} 26 Hz, J_{Rh-H} 18 Hz) support the proposed hydride structure (Figure). As is observed for other transition-metal boranes containing phosphines, the ¹¹B n.m.r. spectrum is very broad at 32.1 MHz; however, the peaks centred at (relative intensity in parentheses) -10.6(6), +12.2(2), and +15.6(2) p.p.m. in CDCl₃ relative to BF₃-OEt₂ are consistent with known transition-metal derivatives of SB10H102-.10

10⁻³M-Solutions of (III) in benzene isomerize and hydrogenate 0.2M solutions of oct-1-ene at 100 atm of H₂ and 25 °C. 50% conversion into octane in <1 h has been observed with concurrent isomerization of the oct-1-ene. The catalyst is recovered unchanged. Under similar conditions < 1% of the cyclohexene is hydrogenated during the same period. The reduction of (-)-carvone (p-mentha-6,8-dien-2-one), proceeding slower than reduction of oct-1-ene, is only 50% complete after 60 h at 100 atm H₂. Selective hydrogenation of the terminal olefinic group is indicated by ¹³C n.m.r. and mass spectral data. Both isomerization and hydrogenation are inhibited by addition of triphenylphosphine implying loss of a ligand as a prerequisite to catalysis. The addition of $SB_{10}H_{11}^{-}$ does not inhibit the catalysis.

We thank the National Science Foundation for partial support of this work.

(Received, 21st June 1976; Com. 696.)

¹ M. R. Churchill, J. J. Hackbarth, A. Davison, D. D. Traficante, and S. S. Wreford, J. Amer. Chem. Soc., 1974, 96, 4041. ² F. Sato, T. Yamomoto, J. R. Wilkinson, and L. J. Todd, J. Organometallic Chem., 1975, 86, 243.

- ⁸ E. L. Hoel and M. F. Hawthorne, J. Amer. Chem. Soc., 1975, 97, 6388.
 ⁴ T. E. Paxson and M. F. Hawthorne, J. Amer. Chem. Soc., 1974, 96, 4674.
- ⁶ H. van Gaal, H. Cuppers, and A. van der Ent, *Chem. Comm.*, 1970, 1694. ⁶ W. R. Pretzer and R. W. Rudolph, *J. Amer. Chem. Soc.*, 1976, 98, 1441.
- ⁷ A deltahedron is a polyhedron whose faces are triangular. Deltahedral structures are found for *closo*-boranes and heteroboranes;
- R. W. Rudolph and W. R. Pretzer, *Inorg. Chem.*, 1972, 11, 1974.
 ⁸ E. L. Muetterties, 'Transition Metal Hydrides,' Marcel Dekker, New York, 1970.
 ⁹ W. L. Smith, B. J. Meneghelli, N. McClure, and R. W. Rudolph, *J. Amer. Chem. Soc.*, 1976, 98, 624; W. R. Pretzer, T. K. Hilty, N. R. D. L. D. K. Chem. 2027. and R. W. Rudolph, *Inorg. Chem.*, 1975, 14, 2459. ¹⁰ W. R. Hertler, F. Klanberg, and E. L. Muetterties, *Inorg. Chem.*, 1967, 6, 1696.