Structural and Magnetic Properties of Copper(11) Dimers Bridged by Oxalate, Azide, and Cyanide Ions; X-Ray Structures of [Cu₂{EtN(CH₂CH₂NEt₂)₂}₂(C₂O₄)][BPh₄]₂ and [Cu₂{MeN(CH₂CH₂NMe₂)₂}₂(N₃)₂][BPh₄]₂. The Role of the Transition-metal Ion Ground State in Magnetic Exchange Interactions

By TIMOTHY R. FELTHOUSE, EDWARD J. LASKOWSKI, DAVID S. BIEKSZA, and DAVID N. HENDRICKSON* (School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801)

Summary Variable-temperature $(4\cdot2-270 \text{ K})$ magnetic susceptibility, e.s.r., and single-crystal X-ray crystallographic data are presented to show that a predominantly d_{22} Cu^{II} ground state can lead to appreciable magnetic exchange interactions via the extended bridges in [Cu₂-(Et₅dien)₂(C₂O₄)][BPh₄]₂, [Cu₂(Me₅dien)₂(N₃)₂][BPh₄]₂, and [Cu₂(tren)₂(CN)][PF₆]₃ [Et₅dien = EtN(CH₂CH₂NEt₂)₂, Me₅dien = MeN(CH₂CH₂NMe₂)₂, and tren = N(CH₂CH₂-NH₂)₃].

THERE has been recent interest in magnetic exchange interactions as propagated by extended bridges (> ca. 5.0 Å) in dimeric transition-metal complexes.¹ It is becoming clear that it is not simply the distance between

the transition-metal ions that determines the magnitude of the exchange interaction across an extended bridging group. We have recently found that appreciable exchange interactions are possible between two Cu^{II} ions via μ -oxalato (C₂O₄²⁻), di- μ (1,3)-azido, and μ -(1,2)-cyano bridges with a predominantly d_{z2} Cu^{II} ion ground state. Our recent structural and magnetic work on three copper(II) dimers reported herein supports this.

The single-crystal X-ray structure of $[Cu_2(Et_5dien)_2-(C_2O_4)][BPh_4]_2^{\dagger}$ was solved using 2679 $(F_{obs} \ge 3\sigma)$ independent reflections collected on a Picker FACS-1 diffractometer with anisotropic thermal parameters on all non-hydrogen atoms (hydrogen atom positions were computer-generated and assigned isotropic thermal parameters of the

 $\label{eq:chi} \ddagger \mathrm{Et_5dien} = \mathrm{EtN}(\mathrm{CH_2CH_2NEt_2})_2; \ \mathrm{Me_5dien} = \mathrm{MeN}(\mathrm{CH_2CH_2NMe_2})_2; \ \mathrm{tren} = \mathrm{N}(\mathrm{CH_2CH_2NH_2})_3.$

atom to which they were attached). As illustrated in Figure 1,[‡] the local environments of the copper(II) ion in the oxalate-bridged dimer approximate to trigonal bipyramids. We had selected the ligand Et₅dien to enforce such a geometry because it is known² that this ligand would lead to a d_{z2} ground state for Cu^{II} ions. The *Q*-band e.s.r. spectrum $(g_1 2.020, g_2 2.119, and g_3 2.242)$ of this compound substantiates this with one g-value close to a value of 2.0. The effectiveness of the d_{z2} ground state in

FIGURE 1. View of the inner co-ordination sphere of $[Cu_2(Et_5$ dien)₂(C_2O_4)]²⁺ showing only the copper, amine nitrogen, and oxalate-bridge atoms. The dimer is located about an inversion centre.

propagating a magnetic exchange interaction in this oxalatebridged dimer is reflected by a maximum in the susceptibility at 60 K, which indicates the presence of an antiferromagnetic exchange interaction with $J = -37 \text{ cm}^{-1}$ (leastsquares fitting of the data to the Bleaney-Bowers' equation³ with $H = -2JS_1 \cdot S_2$). Among the previously studied oxalate-bridged Cu^{II} dimers, $[Cu_2(tren)_2(C_2O_4)][BPh_4]_2$ and $[Cu_2(dien)_2(C_2O_4)][ClO_4]_2^4$ have $|J| < ca. 0.5 \text{ cm}^{-1}$, while $[\operatorname{Cu}_2(\operatorname{dien})_2(\operatorname{C}_2\operatorname{O}_4)][\operatorname{BPh}_4]_2^{-5} \text{ has } J = -7\cdot 4 \text{ cm}^{-1}.$ These three compounds have local Cu^{II} environments that lead to other than d_{z2} ground states and, consequently, weaker exchange interactions.

The single-crystal X-ray structure of [Cu2(Me5dien)2- $(N_3)_2$ [BPh₄]₂ was solved with anisotropic thermal parameters for all non-hydrogen atoms (hydrogen atoms were given isotropic thermal parameters) using 3140 (F_{obs} $\geq 3\sigma$) independent reflections collected on a Syntex Pl diffractometer. The co-ordination geometry in the di-µazido bridged dimer is shown in Figure 2.§ This is the first case of an end-to-end bridging azide ion in a $\mathrm{Cu}^{\mathbf{II}}$ dimer. End-to-end azide bridging is present in polymeric $Cu(N_3)_2^6$ and in one CuI dimer.7 The local environment at each copper^{II} ion in $[Cu_2(Me_5dien)_2(N_3)_2]^{2+}$ can be viewed as intermediate between a trigonal bipyramid and a square pyramid. The X-band e.s.r. spectrum (6-300 K) of this compound is temperature-dependent and complicated by

relatively large zero-field splittings. A maximum at 11 K in the magnetic susceptibility data (fit to $J = -6.5 \text{ cm}^{-1}$) again shows that some degree of the d_{z2} configuration in the Cu^{II} ion ground state can give rise to appreciable antiferromagnetic interaction propagated by an extended bridging group.

FIGURE 2. View of the inner co-ordination sphere of $[Cu_2 (Me_5dien)_2(N_3)_2]^{2+}$ showing only the copper, amine nitrogen, and azide-bridge atoms. The dimer is located about an inversion centre.

Perhaps the most dramatic demonstration of the effectiveness of the $Cu^{II} d_{z^2}$ ground state for magnetic exchange comes from our work on $[Cu_2(tren)_2(CN)][PF_6]_3$. It is well known⁸ that the tripodal ligand tren enforces a trigonalbipyramidal geometry on a Cu^{II} ion and that the remaining co-ordination site is axial. End-to-end cyanide ion bridging is known for one Cu^Π dimer, 9 and with these ideas in mind we have prepared $[Cu_2(tren)_2(CN)][PF_6]_3$, in which a single cyanide ion most probably bridges in an end-to-end fashion between two Cu(tren)²⁺ units. Substantiation for the presence of end-to-end cyanide bridging comes from an antiferromagnetic exchange interaction with J fit to -88cm⁻¹, the low intensity of the C-N stretch in the i.r. spectrum, and a Q-band e.s.r. spectrum which shows a single, slightly asymmetric derivative. Such an e.s.r. signal can only result from a dimer with end-to-end cyanide bridging where the two Cu^{II} ions are in different environments and the large exchange interaction leads to an exchangeaveraged e.s.r. signal. The most important point to make about $[Cu_2(tren)_2(CN)][PF_6]_3$, however, is that the relatively large exchange interaction results from axial bridging with a trigonal-bipyramidal d_{z2} ground state.

(Received, 28th June 1976; Com. 727.)

 $\pm Crystal \ data:$ monoclinic, space group $P2_1/n$ (non-conventional); a = 9.776(5), b = 25.004(12), c = 14.551(6) Å; $\beta = 91.83(2)^\circ$; $M = 1340.46, Z = 2 \text{ dimers}; D_{c} = 1.26, D_{m} = 1.25(2) \text{ g cm}^{-3}; R_{F} = 0.069, R_{WF} = 0.056.$

 $S^{crystal \ data: \ monoclinic, \ space \ group \ P2_1/n \ (non-conventional); a = 12.798(2), b = 19.538(3), c = 13.072(2) \ Å; \beta = 93.64(1)^{\circ}; M = 1196.21, Z = 2 \ dimers; D_c = 1.218, D_m = 1.215 \ g \ cm^{-3}; R_F = 0.051, R_{WF} = 0.058.$

¹L. V. Interrante, ed., 'Extended Interactions Between Metal Ions in Transition Metal Complexes,' American Chemical Society Symposium Series, No. 5, 1975; A. P. Ginsberg, Inorg. Chim. Acta, 1971, 5, 45; P. J. Hay, J. C. Thibeault, and R. Hoffmann, J. Amer. Chem. Soc., 1975, 97, 4884.

² Although there is no work reported on Et₅dien copper complexes, Et₄dien copper complexes are known to be trigonal bipyramidal; see R. F. Ziolo, M. Allen, D. D. Titus, H. B. Gray, and Z. Dori, Inorg. Chem., 1972, 11, 3044 and references therein.

- ³ B. Bleaney and K. D. Bowers, *Proc. Roy. Soc.*, 1952, *A*, 214, 451.
 ⁴ D. M. Duggan, E. K. Barefield, and D. N. Hendrickson, *Inorg. Chem.*, 1973, 12, 985.
 ⁵ G. R. Hall, D. M. Duggan, and D. N. Hendrickson, *Inorg. Chem.*, 1975, 14, 1956.
 ⁶ G. R. Hall, D. M. Duggan, and D. N. Hendrickson, *Inorg. Chem.*, 1975, 14, 1956.
- ⁶ I. Agrell, Acta Chem. Scand., 1967, **21**, 2647; R. Söderquist, Acta Cryst., 1968, **B24**, 450. ⁷ R. F. Ziolo, A. P. Gaughan, Z. Dori, C. G. Pierpont, and R. Eisenberg, Inorg. Chem., 1971, **10**, 1289.
- ⁸ E. J. Laskowski, D. M. Duggan, and D. N. Hendrickson, Inorg. Chem., 1975, 14, 2449 and references therein.
- ⁹ D. M. Duggan, R. G. Jungst, K. R. Mann, G. D. Stucky, and D. N. Hendrickson, J. Amer. Chem. Soc., 1974, 96, 3443.