¹H Nuclear Magnetic Resonance Evidence for the Existence of LiCu₂Me₃ and Li₂CuMe₃

By E. C. Ashby* and John J. Watkins

(School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332)

Summary Low-temperature n.m.r. spectra of the system MeLi-MeCu at various ratios in dimethyl ether show the presence of three cuprate complexes: LiCuMe₂, LiCu₂Me₃, and Li₂CuMe₃.

LITHIUM DIALKYLCUPRATES have proven to be very versatile reagents in organic synthesis.¹ Several recent reports, however, have been concerned with unusual reactivity of

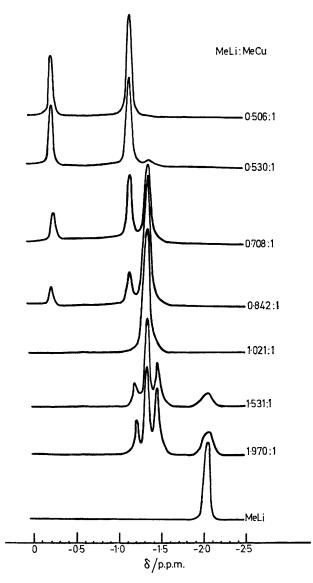
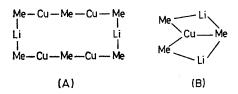



FIGURE. 60 MHz ¹H n.m.r. spectra of solutions of various ratios of MeLi to MeCu in Me₂O at -136 °C.

reagents prepared by mixing lithium dialkyl- or diarylcuprates with the corresponding organolithium compounds. For example, the reagent having the stoicheiometry LiCuPh2-PhLi appears to be more reactive than LiCuPh2 in metal-halogen exchange reactions and coupling with aryl bromides.² Also it has been recently found³ that a 3:2 mixture of LiCuMe₂ and MeLi is more stereoselective toward 4-t-butylcyclohexanone than either LiCuMe₂ or MeLi. These reports suggest that lithium diorganocuprates and organolithium compounds are capable of reacting to form complexes of the type Li₂CuMe₃ and Li₃CuMe₄. However, previous ¹H and natural abundance ¹³C n.m.r. studies on the system MeLi and LiCuMe₂ in diethyl ether at -60 °C have failed to show the existence of any complexes.⁴ In view of the interest in this area and the possibility of the existence of other cuprates in addition to LiCuMe₂, we studied the ¹H n.m.r. spectra of MeLi-MeCu mixtures further. Dimethyl ether was chosen as solvent since exchange rates should be considerably slower than in diethyl ether because of its greater basicity compared to diethyl ether and because considerably lower solution temperatures can be reached (-136 vs. -90 °C).

We report that ¹H n.m.r. signals due to Li₂CuMe₃, LiCuMe₂, and LiCu₂Me₃ can be observed for the system MeLi-MeCu at -136 °C in dimethyl ether solvent (Figure). When the ratio of MeLi: MeCu is less than 1, three signals are observed $(\delta - 0.22, -1.17, \text{ and } -1.38)$. The signal at $\delta - 1.38$ (due to LiCuMe₂) increases as the MeLi: MeCu ratio increases from 0.530 to 1.021 and is the only signal observed at the latter ratio. The integration of the signals at δ -0.22 and -1.17 is always in the ratio 1:2 and is due to LiCu₂Me₃, since these signals are the only ones observed at a MeLi: MeCu ratio of 0.506. When the ratio of MeLi: MeCu is greater than 1, four signals are observed ($\delta - 1.25, -1.38$, -1.49, and -2.03). The signal at $\delta - 2.03$ is due to MeLi and the signal at $\delta - 1.38$ is due to LiCuMe₂. The integration of the signals at δ -1.25 and -1.49 is always in a 1:2 ratio and is due to Li₂CuMe₃, since a calculation of the amount of Li₂CuMe₃ correlated well with that predicted by integration of the n.m.r. spectrum.[†] The 1:2 integration of the two methyl signals observed for LiCu₂Me₃ and Li₂CuMe₃ can be accounted for on the basis of structures (A) and (B).[‡]

† Several other equilibrium mixtures were assumed, but none matched the data as well as MeLi, LiCuMe₂, and Li₂CuMe₃.

 \ddagger Molecular weight measurements on LiCu₂Me₃ show the compounds to be dimeric in tetrahydrofuran and LiCu₂Me₃ to be monomeric in both diethyl ether and tetrahydrofuran.

The data presented suggested the following equilibria (1)—(3) at -136 °C. Equilibria (1) and (2) lie very much to the right whereas equilibrium (3) had $K_{eq} = 0.36$ at -136 °C.

> $MeLi + 2MeCu \rightleftharpoons LiCu_2Me_3$ (1)

> $LiCu_2Me_3 + MeLi \Leftrightarrow 2LiCuMe_2$ (2)

> $LiCuMe_2 + MeLi \rightleftharpoons Li_2CuMe_3$ (3)

Although LiCu₂Me₃ and Li₂CuMe₃ are observed at -136 °C, a question arises as to the existence of these species at 0 °C, the temperature at which these reagents are normally allowed to react with organic substrates. Equilibrium (3) would not be expected to shift to the left as the temperature is increased based on the observation that the equilibrium constant for the formation of Li₃ZnMe₅ from Li₂ZnMe₄ and MeLi increases with increasing temperature.⁵ As the temperature is raised, for MeLi: MeCu ratios greater than 1, the three signals at $\delta = 1.25$, -1.38, and -1.49 collapse into a single peak at δ 1.38 owing to intermolecular exchange between Li2CuMe3 and LiCuMe2. However, the ratio between this signal and that at δ -2.03 for MeLi remains constant to temperatures as high as -40 °C. (Higher temperatures were not attempted because of the high volatility of dimethyl ether). This ratio is the same as that between $Li_2CuMe_3 + LiCuMe_2$ and MeLi when the temperature is -136 °C.

Low temperature n.m.r. studies of the system MeLi-MeCu at temperatures as high as 0° in tetrahydrofuran reveal the presence of the same three 'ate' complexes as observed in dimethyl ether, *i.e.* LiCu₂Me₃, LiCuMe₂, and Li₂CuMe₃. In diethyl ether, separate n.m.r. signals for Li₂CuMe₃ are not observed at temperatures as low as -110 °C. However, the ratio of the LiCuMe₂ signal to the MeLi signal is greater than that predicted by analysis of the mixture and can be accounted for by a compound such as Li₂CuMe₃.

(Received, 15th June 1976; Com. 679.)

- ¹ For recent reviews of organocopper chemistry, see G. H. Posner, Org. Reactions, 1972, 19, 1; J. Normant, Synthesis, 1972, 63; ^a H. O. House, W. L. Respess, and G. M. Whitesides, J. Org. Chem., 1966, 31, 3128.
 ^b H. O. House, W. L. Respess, and G. M. Whitesides, J. Org. Chem., 1966, 31, 3128.

 - ⁵ L. M. Seitz and T. L. Brown, J. Amer. Chem. Soc., 1966, 88, 4140.