\boldsymbol{X}-Ray Crystal Structure of $\mathrm{Te}_{6}\left(\mathrm{AsF}_{6}\right)_{4} \cdot 2 \mathrm{AsF}_{3}$. A New Trigonal Prismatic Cluster Cation $\mathrm{Te}_{6}{ }^{4+}$

By R. J. Gillespie, W. Luk, and D. R. Slim
(Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada)

Summary A single crystal X-ray diffraction study has shown that $\mathrm{Te}_{6}\left(\mathrm{AsF}_{6}\right)_{4} \cdot 2 \mathrm{AsF}_{3}$ contains the novel trigonal prismatic cluster $\mathrm{Te}_{6}{ }^{4+}$.

In our earlier studies we have shown that tellurium can be oxidised by AsF_{5} and by SbF_{5} in SO_{2} solution to give the cations $\mathrm{Te}_{6}{ }^{2+}, \mathrm{Te}_{4}{ }^{2+}$, and $\mathrm{Te}_{n}{ }^{n+},{ }^{1}$ In attempting to prepare a crystalline sample of $\mathrm{Te}_{n}\left(\mathrm{AsF}_{6}\right)_{n}$ we obtained the compound $\mathrm{Te}_{6}\left(\mathrm{AsF}_{6}\right)_{4} \cdot 2 \mathrm{AsF}_{3}$ and have determined its structure by X-ray crystallography.

The compound $\mathrm{Te}_{6}\left(\mathrm{AsF}_{6}\right)_{4} \cdot 2 \mathrm{AsF}_{3}$ may be prepared as a brown crystalline solid by the reaction of tellurium with AsF_{5} in AsF_{3} as the solvent. In liquid sulphur dioxide the similar compound, $\mathrm{Te}_{6}\left(\mathrm{AsF}_{6}\right)_{4} \cdot \mathrm{SO}_{2}$ can be obtained but the crystals decompose slowly by losing SO_{2}. However, if this material is recrystallized from AsF_{3} brown crystals, identical with those produced by the direct reaction, are obtained.

Figure 1. The structure of the $\mathrm{Te}_{6}{ }^{4+}$ cation
Crystal data were obtained from precession and Weissenberg techniques using $\mathrm{Mo}-K_{\alpha}$ radiation: $\mathrm{As}_{3} \mathrm{~F}_{15} \mathrm{Te}_{3}, M$ 892.7; monoclinic, $a=14.832(9), \quad b=12 \cdot 242(8), \quad c=$ $15 \cdot 30(1) \AA, \quad \beta=96.56(8)^{\circ}, \quad U=2760 \cdot 7 \AA^{3}$, space group $C 2 / c$ (No. $15, C_{2 h^{6}}{ }^{6},{ }^{2} Z=8$. Intensity data were collected using a Syntex $\mathrm{P} \overline{1}$ automatic diffractometer with graphite monochromated $\mathrm{Mo}-K_{\alpha}$ radiation giving 2384 independent reflections, 1747 of which had $I>3 \sigma(I)$. The positions of the 6 heavy atoms were located using direct methods and all the light atoms from an electron density map. Full-

(1)

(2)

Figure 2. Resonance structures for $\mathrm{Te}_{6}{ }^{4+}$
matrix least-squares refinement of positional and isotropic thermal parameters has led to an R factor of $0 \cdot 10$. Refinement is being continued.

The unit cell contains four discrete $\mathrm{Te}_{6}{ }^{4}+$ cations, one of which is shown in Figure 1, sixteen discrete octahedral $\mathrm{AsF}_{6}{ }^{-}$anions, and eight AsF_{3} molecules.

Figure 3. Structures related to $\mathrm{Te}_{6}{ }^{4+}$
The cation $\mathrm{Te}_{6}{ }^{4+}$ represents the first example of a simple hexa-atomic trigonal prism molecule. The only two known related molecules are prismane $\mathrm{C}_{6} \mathrm{H}_{6}{ }^{3}$ and the cluster cation $\mathrm{Bi}_{9}{ }^{5+.4,5}$ which has a tricapped trigonal prism structure. A simple valence bond structure containing only single bonds can be written for prismane but $\mathrm{Te}_{6}{ }^{4+}$ can only be described in valence bond terminology by several resonance structures. For example, there are six resonance structures of the type (1) (see Figure 2), in which there is a double bond in one of the triangular rings. Thus each of these bonds may be said to have 17% double bond character which is consistent with the observation that these bonds are shorter than the bonds linking the triangles. Indeed the bond lengths within the triangles are similar to those found in $\mathrm{Te}_{4}{ }^{2+}$ which can be described as having 25% double bond
character. ${ }^{6}$ The bonds linking the triangles are appreciably longer than a Te-Te single bond, e.g. $2 \cdot 74 \AA$ for diphenyl ditelluride. ${ }^{7}$ These long $\mathrm{Te}-\mathrm{Te}$ bonds can be rationalized in terms of three no-bond structures such as (2). A third possible type of resonance structure (3) would appear, from the observed bond distances, to be unimportant.

The relationship between the structures of $\mathrm{Te}_{2} \mathrm{Se}_{4}{ }^{2+}$, $\mathrm{Te}_{3} \mathrm{~S}_{3}{ }^{2+}, 8$ and possible structures for $\mathrm{Te}_{n}{ }^{n+}$ and $\mathrm{Te}_{6}{ }^{2+}$ is of interest. The first two have boat-shaped six-membered rings with one cross-ring bond forming a three-membered Te_{3} or $\mathrm{Te}_{2} \mathrm{Se}$ ring (Figure 3). ${ }^{8}$ It seems reasonable to assume that $\mathrm{Te}_{6}{ }^{2+}$ might have the same structure. Removal of an electron pair then leads to the formation of an additional bond to complete the second Te_{3} triangle to give $\mathrm{Te}_{6}{ }^{4+}$. Removal of a second electron pair could plausibly lead to the formation of a third bond between the triangles, giving $\mathrm{Te}_{6}{ }^{6+}$ the structure of which is not known. The trigonal prism has been suggested as a possible shape for $\mathrm{Te}_{n}{ }^{n+}$ for which n has not yet been determined.

Comparison of the structure of $\mathrm{Te}_{6}{ }^{4+}$ with the unknown Te_{6} molecule, which may be assumed to have a six-membered ring in the chair formation like $\mathrm{S}_{6},{ }^{9}$ is also of interest. Removal of a pair of electrons to give $\mathrm{Te}_{6}{ }^{2+}$ leads to the formation of a cross-ring bond and the adoption of a boat conformation. A similar conformational change is observed when a pair of electrons is removed from $\mathrm{S}_{8}{ }^{10}$ to give $\mathrm{S}_{8}{ }^{2+11}$ which has an exo-endo conformation.

The two crystallographically different $\mathrm{AsF}_{6}{ }^{-}$groups are regular octahedra with a mean As-F distance of $1.68 \AA$ which is similar to that found in other $\mathrm{AsF}_{6}{ }^{-}$salts. The AsF_{3} group has the expected $\mathrm{AX}_{3} \mathrm{E}$ geometry with mean As-F bond lengths of $1.69 \AA$ and mean $F-$ As--F angles of 92°. The F -As-F angles are expected to be greater than the corresponding angles in $\mathrm{SbF}_{3}\left(88 \cdot 7^{\circ}\right)^{12}$ as the smaller electronegativity difference between arsenic and fluorine will lead to greater bond-bond repulsions. ${ }^{13}$
(Received, 26th July 1976; Com. 844.)
${ }^{1}$ J. Barr, R. J. Gillespie, G. P. Pez, P. K. Ummat, and O. C. Vaidya, Inorg. Chem., 1971, 10, 362.
: 'International Tables for X-ray Crystallography,' Vol. 1, Kynoch Press, Birmingham, 1965.
${ }^{5}$ Various derivatives of prismane have been prepared in recent years of which the first was hexamethylprismane: D. M. Lemal and J. P. Lokensgard, J. Amer. Chem. Soc., 1966, 88, 5934.
${ }_{5} 5$ R. M. Friedman and J. D. Corbett, Inorg. Chim. Acta, 1973, 7, 525.
${ }^{5}$ A. Hershaft and J. D. Corbett, Inorg. Chem., 1963, 2, 979.
${ }^{6}$ T. W. Couch, D. A. Lokken, and J. D. Corbett, Inorg. Chem., 1971, 10, 362.
${ }^{7}$ G. Llabres, O. Dideberg, and L. Dupont, Acta Cryst., 1972, B28, 2438.
${ }^{8}$ R. J. Gillespie, W. Luk, E. M. Maharajh, and D. R.' Slim, Inorg. Chem., in the press.
${ }^{2}$ M. Schmidt and W. Siebert, 'Comprehensive Inorganic Chemistry,' Ch. 23, Pergamon Press, Oxford, 1973.
${ }^{10}$ A. Caron and J. Donahue, Acta Cryst., 1965, 18, 562.
${ }^{11}$ C. Davies, R. J. Gillespie, J. J. Park, and J. Passmore, Inorg. Chem., 1971, 10, 2781.
${ }^{12}$ A. J. Edwards, J. Chem. Soc. (A), 1970, 2751.
${ }^{13}$ R. J. Gillespie, 'Molecular Geometry,' Van Nostrand Reinhold, London, 1972.

