Synthesis of Chloroisoxazoline Amino-acids

By JACK E. BALDWIN,* CAROLYN HOSKINS, and LAWRENCE KRUSE (Chemistry Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Summary The addition of chloronitrile oxide to the nitronate salts of $\alpha\beta$ -unsaturated- α -nitrocrotonic esters yields the 3-chloroisoxazoline adducts, in an efficient reaction; further transformations convert these into the free aminoderivatives which are members of a class of biologically interesting amino-acids.

THE recent discovery of the unusual amino acid (1) as a fungal metabolite of *Streptomyces sviceus*, its antitumour activity, and the difficulty of obtaining it in quantity¹ led us to consider synthetic routes to this general class of compounds, which includes cycloserine $(2)^2$ and tricholomic acid (3).³

It seemed reasonable that (1) could be made by a 1,3dipolar addition of chloronitrile oxide⁴ to vinyl glycine,⁵ as (4). As a test of this idea we showed that styrene added chloronitrile oxide, generated *in situ* from phosgene oxime, to give a poor yield (6%) of the adduct (5),† δ (CDCl₃) $3\cdot2-3\cdot9$ (ABX, J 9 and 3 Hz, 2H), $5\cdot7$ (t, J 10 Hz, 1H) and $7\cdot17$ (s, 5H); ν_{max} 3200, 2950, and 1595 cm⁻¹; *m/e* 181 (*M*⁺). However, chloronitrile oxide could not, in our hands, be added to vinyl glycine, as the zwitterion or as its ester and *N*-acyl derivatives; apparently the rate of the 1,3-dipolar reaction was too slow to compete with furoxan formation.

In connection with our total stereocontrolled synthesis of penicillin,⁶ we had prepared the nitronate salt (6), and it

† All new compounds have given adequate analytical and spectral data.

was found to add smoothly in aqueous solution to chloronitrile oxide to yield (99%) the adduct (8) as a mixture of diastereoisomers, δ (CDCl₃) 1.67, 1.72 (2 × s, 3H total), 3.00, 3·20, 3·71, 3·91, 4·02 (2× AB q, J 17 Hz, 2H total, one peak obscured by the methyl ester), 3.84 (s, 3H total), 5.33, and 5.42 (2 \times s, 1H total); ν_{max} 2950, 1750, 1595, 1560, and 1340 cm⁻¹; m/e 237 (M⁺).

Reduction of (8) with zinc amalgam in dioxan-HCl gave the amino-ester which was isolated as its toluene-p-sulphonic acid salt (9), m.p. 167-169 °C; δ (D₂O) 1.40, 1.53 $(2 \times s, 3H \text{ total}), 2.26 (s, 3H), 3.00, 3.32, 3.42, 3.54, 3.82$ (AB q, J 18 Hz, 2H), 3.73, 3.77 (2× s, 3H total), 4.32, 4.42 (2 \times s, 1H total) 7.17-8.0 (m, 4H); v_{max} 1740 and 1601 cm⁻¹, which resisted all attempts at selective hydrolysis of the methyl ester. Repetition of this sequence with the trichloroethyl ester (7) gave (10), 85%; δ (CDCl₃) 1.75, 1.78 (2 x s, 3H total), 3.0, 3.33, 3.7, 3.83, 4.0, 4.15 (2 x

ABq, J 17 Hz, 2H total), 4.9, 4.92 (2 × s, 2H total), 5.58, and 5.62 ($2 \times$ s, 1H total); v_{max} 2950, 1760, 1560, 1440, and 1370 cm⁻¹.

Reduction of (10) with zinc in acetic acid at 0 °C gave in one step the diastereoisomeric mixture (11), δ (D₂O) 1.43 (s, 3H total), 2.83, 3.13, 3.16, 3.53, 3.55, 3.83, and 3.86 (2 \times AB q, J 17 Hz, 2H total); v_{max} 3300, 2950, and 1720 cm⁻¹, chromatographed on Dowex 50×4 cation exchange resin (H⁺ cycle). One of the isomers, of unknown relative configuration, was separated by crystallization from acetone, m.p. 228-230 °C; δ (D₂O) 1.43 (s, 3H), 2.83, 3.16, 3.55, and 3.86 (AB q, J 17 Hz, 2H), v_{max} 3300, 2950, and 1720 cm⁻¹.

We thank the National Science Foundation and the National Institutes of Health for financial support.

(Received, 26th July 1976; Com. 853.)

¹ D. G. Martin, D. J. Duchamp, and C. G. Chidester, Tetrahedron Letters, 1973, 27, 2549; D. A. Cooney, H. N. Jayaram, J. A. Ryan, and V. H. Bono, Cancer Chem. Rep., 1974, 58, 793.

² Pl. A. Plottner, A. Boller, H. Frick, A. Fürst, B. Hegedüs, H. Kirchensteiner, St. Majnoni, R. Schläpfer, and H. Spiegelb**urg**, Helv. Chim. Acta, 1957, 40, 1531. ³ T. Takemoto and T. Nakajima, Yakugaku Zasshi, 1964, 84, 1183. ⁴ G. Endres, Ber., 1932, 65, 65; L. Birkenbach and K. Sennewald, Annalen, 1931, 489, 7; Ber., 1932, 65, 546.

⁵ P. Friis, P. Helboe, and P. O. Larsen, Acta Chim. Scand., 1974, 28B, 317; R. Rando, Biochemistry, 1974, 13, 3859; Accounts Chem. Res., 1975, 8, 281. [•] J. E. Baldwin, M. A. Christie, S. B. Haber, and L. I. Kruse, J. Amer. Chem. Soc., 1976, 98, 3045.