Two New Molecular Phosphorus Sulphides: α -P₄S₄ and β -P₄S₄; X-Ray Crystal Structure of α -P₄S₄

By ALISON M. GRIFFIN, PETER C. MINSHALL, and GEORGE M. SHELDRICK* (University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW)

Summary α -P₄S₄ and β -P₄S₄ are formed quantitatively by the action of (Me₃Sn)₂S on α -P₄S₃I₂ and β -P₄S₃I₂ respectively; X-ray crystal structure analysis shows that α -P₄S₄ possesses D_{2d} molecular symmetry in the crystal.

FOURIER transform phosphorus n.m.r. spectra indicate that at least five previously unreported molecular binary phosphorus sulphides are present in fused $P_4S_3-P_4S_7$ mixtures.¹ We find that two of these species, both of composition P_4S_4 , are formed quantitatively by the action of an excess of (Me₃Sn)₂S on the two isomers of $P_4S_3I_2^2$ in CS₂ solution [equations (1) and (2)].

$$(Me_{3}Sn)_{2}S + | S | \rightarrow P \\ S - P - I \\ (\alpha - P_{4}S_{3}I_{2}) \\ (\alpha - P_{4}S_{3}I_{2}) \\ (\alpha - P_{4}S_{4})$$

The mass spectra of both isomers exhibit molecular ions, though there appears to be some disproportionation of β -P₄S₄ on the probe; neither possesses an i.r. absorption in the region 600—700 cm⁻¹, suggesting that no terminal P=S units are present. α -P₄S₄ is stable indefinitely in CS₂ solution, and gives a single line phosphorus n.m.r. spectrum (δ -89·4 p.p.m. from external P₄O₆), consistent with the molecular structure found in the crystal by X-ray diffraction. The phosphorus spectrum of β -P₄S₄ was assigned as an AMX₂ spin system, with $J_{1,2}$ 50·4(2), $J_{1,3}$ 168·4(2), and $J_{2,3}$ 18·2(2) Hz, and δ_1 +26·96(1), δ_2 -62·09(1), and δ_3 -94·97(1) p.p.m. N.m.r. spectra show that the initial products of the reaction of triphenylphosphine with α -P₄S₅

in CS₂ are triphenylphosphine sulphide and β -P₄S₄ [equation (3)]. After several days some P₄S₃ and α -P₄S₄ are also formed, possibly *via* disproportionation of β -P₄S₄. The structure proposed for β -P₄S₄ is based on the spectroscopic evidence and the two methods of preparation; it is difficult

to isolate a sample uncontaminated with α -P₄S₄, and we have not yet obtained crystals suitable for X-ray structure determination.

The crystals of α -P₄S₄ are monoclinic, space group C2/c, a = 9.771(8), b = 9.047(7), c = 8.746(6) Å, $\beta = 102.67(6)^{\circ}$, $Z = 4, U = 754.3 \text{ Å}^3, D_c = 2.22 \text{ g cm}^{-3}, \mu(\text{Mo-}K_{\alpha}) = 36.91$ cm⁻¹. 2524 data were measured with a Syntex $P2_1$ 4-circle diffractometer with graphite monochromated Mo- K_{α} radiation, and were corrected for absorption. Equivalent reflections were averaged to give 1121 unique observed reflections $[F > 4\sigma(F)]$. The structure was solved by multisolution Σ -2 sign expansion and refined anisotropically to $R_{\rm w}$ 0.029. The molecule possesses D_{2d} (42m) symmetry within experimental error, and a two-fold crystallographic axis which passes through S-1 and S-2. The observed temperature factors give good agreement with the rigid body model of molecular libration; the librationally corrected dimensions averaged for D_{2d} symmetry are given in the Figure. The uncorrected bond lengths are ca. 0.010 Å shorter. Even the uncorrected P-P distance is significantly longer than the longest P-P bond in other phosphorus sulphides $[2.326(7) \text{ Å in } P_4S_7]$;³ it is likely that kinetic rather than thermodynamic factors are responsible for the stability of α -P₄S₄.

It is difficult to reconcile these results with the report⁴ by Vincent and Vincent-Forat that a P-S melt of composition 1:1 consists of a compound P_4S_4 with a proposed structure different from either of the isomers reported here. Their

FIGURE. X-Ray structure of α -P₄S₄; distances in Å.

i.r. spectrum, however, is entirely consistent with the mixture of components of such melts revealed by n.m.r. spectroscopy.

We thank the S.R.C. for financial support.

(Received, 5th July 1976; Com. 744.)

- ¹ A. M. Griffin and G. M. Sheldrick, unpublished results.
- ² G. J. Penney and G. M. Sheldrick, J. Chem. Soc. (A), 1971, 1100. ³ A. Vos, R. Olthof, F. van Bolhuis, and R. Botterweg, Acta Cryst., 1965, 19, 864.
- ⁴ H. Vincent and C. Vincent-Forat, Bull. Soc. chim. France, 1973, 499.