Two New Molecular Phosphorus Sulphides: $\alpha-\mathrm{P}_{4} \mathbf{S}_{4}$ and $\beta-\mathrm{P}_{4} \mathbf{S}_{4}$; \boldsymbol{X}-Ray Crystal Structure of $\boldsymbol{\alpha}-\mathrm{P}_{\mathbf{4}} \mathrm{S}_{\mathbf{4}}$

By Alison M. Griffin, Peter C. Minshall, and George M. Sheldrick*
(University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW)

Summary $\alpha-\mathrm{P}_{4} \mathrm{~S}_{4}$ and $\beta-\mathrm{P}_{4} \mathrm{~S}_{4}$ are formed quantitatively by the action of $\left(\mathrm{Me}_{3} \mathrm{Sn}\right)_{2} \mathrm{~S}$ on $\alpha-\mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}$ and $\beta-\mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}$ respectively; X-ray crystal structure analysis shows that $\alpha-\mathrm{P}_{4} \mathrm{~S}_{4}$ possesses $D_{2 d}$ molecular symmetry in the crystal.

Fourier transform phosphorus n.m.r. spectra indicate that at least five previously unreported molecular binary phosphorus sulphides are present in fused $P_{4} S_{3}-P_{4} S_{7}$ mixtures. ${ }^{1}$ We find that two of these species, both of composition $\mathrm{P}_{4} \mathrm{~S}_{4}$, are formed quantitatively by the action of an excess of $\left(\mathrm{Me}_{3} \mathrm{Sn}\right)_{2} \mathrm{~S}$ on the two isomers of $\mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}{ }^{2}$ in CS_{2} solution [equations (1) and (2)].

The mass spectra of both isomers exhibit molecular ions, though there appears to be some disproportionation of $\beta-\mathrm{P}_{4} \mathrm{~S}_{4}$ on the probe; neither possesses an i.r. absorption in the region $600-700 \mathrm{~cm}^{-1}$, suggesting that no terminal $\mathrm{P}=\mathrm{S}$ units are present. $\alpha-\mathrm{P}_{4} \mathrm{~S}_{4}$ is stable indefinitely in CS_{2} solution, and gives a single line phosphorus n.m.r. spectrum ($\delta-89 \cdot 4$ p.p.m. from external $\mathrm{P}_{4} \mathrm{O}_{6}$), consistent with the molecular structure found in the crystal by X-ray diffraction. The phosphorus spectrum of $\beta-\mathrm{P}_{4} \mathrm{~S}_{4}$ was assigned as an AMX_{2} spin system, with $J_{1,2} 50 \cdot 4(2), J_{1,3} 168 \cdot 4(2)$, and $J_{2,3} 18.2(2) \mathrm{Hz}$, and $\delta_{1}+26.96(\mathrm{I}), \delta_{2}-62 \cdot 09(1)$, and δ_{3} $-94.97(1)$ p.p.m. N.m.r. spectra show that the initial products of the reaction of triphenylphosphine with $\alpha-\mathrm{P}_{4} \mathrm{~S}_{5}$

in CS_{2} are triphenylphosphine sulphide and $\beta-\mathrm{P}_{4} \mathrm{~S}_{4}$ [equation (3)]. After several days some $P_{4} S_{3}$ and $\alpha-P_{4} S_{4}$ are also formed, possibly via disproportionation of $\beta-\mathrm{P}_{4} \mathrm{~S}_{4}$. The structure proposed for $\beta-\mathrm{P}_{4} \mathrm{~S}_{4}$ is based on the spectroscopic evidence and the two methods of preparation; it is difficult
to isolate a sample uncontaminated with $\alpha-\mathrm{P}_{4} \mathrm{~S}_{4}$, and we have not yet obtained crystals suitable for X-ray structure determination.

The crystals of $\alpha-\mathrm{P}_{4} \mathrm{~S}_{4}$ are monoclinic, space group $C 2 / c$, $a=9.771(8), b=9.047(7), c=8.746(6) \AA, \beta=102.67(6)^{\circ}$, $Z=4, U=754.3 \AA^{3}, D_{\mathrm{c}}=2.22 \mathrm{~g} \mathrm{~cm}^{-3}, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=36.91$ cm^{-1}. 2524 data were measured with a Syntex $P 2_{1} 4$-circle diffractometer with graphite monochromated Mo- K_{α} radiation, and were corrected for absorption. Equivalent reflections were averaged to give 1121 unique observed reflections $[F>4 \sigma(F)]$. The structure was solved by multisolution $\Sigma-2$ sign expansion and refined anisotropically to $R_{\mathrm{W}} 0 \cdot 029$. The molecule possesses $D_{2 d}(\overline{4} 2 m)$ symmetry within experimental error, and a two-fold crystallographic axis which passes through S-1 and S-2. The observed temperature factors give good agreement with the rigid body model of molecular libration; the librationally corrected dimensions averaged for $D_{2 d}$ symmetry are given in the Figure. The uncorrected bond lengths are ca. $0 \cdot 010 \AA$ shorter. Even the uncorrected P-P distance is significantly longer than the longest $\mathrm{P}-\mathrm{P}$ bond in other phosphorus sulphides $\left[2 \cdot 326(7) \AA\right.$ in $\left.\mathrm{P}_{4} \mathrm{~S}_{7}\right] ;{ }^{3}$ it is likely that kinetic rather than thermodynamic factors are responsible for the stability of $\alpha-\mathrm{P}_{4} \mathrm{~S}_{4}$.

It is difficult to reconcile these results with the report ${ }^{4}$ by Vincent and Vincent-Forat that a P-S melt of composition $1: 1$ consists of a compound $\mathrm{P}_{4} \mathrm{~S}_{4}$ with a proposed structure different from either of the isomers reported here. Their

Figure. $\quad X$-Ray structure of $\alpha-\mathrm{P}_{4} \mathrm{~S}_{4} ;$ distances in \AA.
i.r. spectrum, however, is entirely consistent with the mixture of components of such melts revealed by n.m.r. spectroscopy.

We thank the S.R.C. for financial support.
(Received, 5th July 1976; Com. 744.)
${ }^{1}$ A. M. Griffin and G. M. Sheldrick, unpublished results.
${ }^{2}$ G. J. Penney and G. M. Sheldrick, J. Chem. Soc. (A), 1971, 1100.
${ }^{3}$ A. Vos, R. Olthof, F. van Bolhuis, and R. Botterweg, Acta Cryst., 1965, 19, 864.
${ }^{4}$ H. Vincent and C. Vincent-Forat, Bull. Soc. chim. France, 1973, 499.

