Origin of the Oxygen Atoms in the Lactone Bridge of C₁₉-Gibberellins

By JOHN R. BEARDER* and JAKE MACMILLAN

(Department of Organic Chemistry, The University, Bristol BS8 1TS)

and Bernard O. Phinney

(Department of Biology, University of California, Los Angeles, California 90024)

Summary [18O]-Label in the 19-oic acid of the C_{20} -gibberellins, GA_{12} and GA_{12} -alcohol, is incorporated without loss into C_{19} -gibberellins, using cultures of *Gibberella* fujikuroi, mutant Bl-41a.

IN the biosynthesis of the gibberellin (GA) plant hormones, the conversion of C_{20} -GAs into C_{19} -GAs is an unsolved problem. For example, in the transformation of GA₁₂ (1) into GA₉ (5)^{1,2} in cultures of *Gibberella fujikuroi* the compounds (2; 19,20-lactone), (3), and (4), representing successive oxidation at C-20, do not act as intermediates.² A clue is provided by the following [¹⁸O]-labelling studies which indicate that both oxygen atoms in the lactone bridge of C_{19} -GAs are derived from the 19-oic acid of their C_{20} -GA precursors.

 GA_{12} -alcohol (8)³ was prepared with 55 atom % of $[^{16}O_1]$ in the 19-oic acid by hydrolysis of the methyl ester using KO^tBu-HO^tBu containing H₂¹⁸O (61 atom %). Oxidation of the $[{\rm ^{18}O_1}]\mbox{-alcohol}\ (8)$ gave GA_{12}\ (1) containing 56 atom % of $[{\rm ^{18}O_1}]\mbox{-acid}.$ Both $[{\rm ^{18}O_1}]\mbox{-acid}\ (1)$ and (8)were cultured with resuspended mycelium of the fungus, Gibberella fujikuroi mutant Bl-41a, which is blocked for GA biosynthesis.⁴ After 2 and 5 days, the [18O]-content of the metabolites was determined by g.l.c.-m.s. of the derivatised acids, obtained by extraction of the culture medium.

 $[^{18}O_1]$ -GA₁₂ (1) was metabolised to GA₁₅ (2; 19,20-lactone), GA_{24} (3), GA_{25} (4), and GA_{9} (5), respectively, containing 32, 53, 55, and 53 atom % of [18O]. The 18O-content was measured from the $M^+ - 15$ ion in the mass spectrum of the Me₃Si esters. Similarly [18O₁]-GA₁₂-alcohol (8), known^{3,5} to be an excellent precursor of GA_3 (12), gave GA_{14} (9), GA₃₆ (10), GA₁₃ (11), GA₄ (7), GA₁ (6), and GA₃ (12), respectively, containing 59, 54, 53, 54, 56, and 55 atom % of ^{[18}O]. In these cases the ^{[18}O]-content was determined from the $M^+ - 15$ ion in the mass spectra of the methyl ester Me₃Si ethers. The mass spectra of the C_{19} -GAs showed that the [18O]-atoms were in the lactone ring. For example, the fragmentation ions due to the loss of Me₃SiOH and $Me_3SiOC(H) = O$ from the M^+ ion of GA_9Me_3Si ester contained 55 atom % [18O].

These results show that both oxygen atoms in the 19-oic acid of C_{20} -GAs are incorporated into the lactone ring of C_{19} -GAs. They also indicate that the substrates GA₁₂ (1) and GA_{12} -alcohol (8), and intermediates, are not covalently bound through the 19-oic acid to the enzyme(s) catalysing the conversion and that the 19,20-lactone of (2) is not an intermediate. Furthermore, the conversion must involve an intermediate with an electrophilic centre at C-10 which is attacked by the 19-oic acid; an intermediate 10α -alcohol is therefore excluded.

We thank Mr. Paul Gaskin for the g.l.c.-m.s., and the A.R.C., N.A.T.O., and N.S.F. for financial support.

(Received, 2nd August 1976; Com. 885.)

- ¹ R. Evans and J. R. Hanson, J.C.S. Perkin I, 1975, 663.
- ² J. R. Bearder, J. MacMillan, and B. O. Phinney, J.C.S. Perkin I, 1975, 721. ³ J. R. Hanson and J. Hawker, Phytochemistry, 1973, 12, 1073.
- ⁴ J. R. Bearder, J. MacMillan, C. M. Wels, M. B. Chaffey, and B. O. Phinney, *Phytochemistry*, 1974, 13, 911. ⁵ J. R. Bearder, J. MacMillan, and B. O. Phinney, *Phytochemistry*, 1973, 12, 2655.