843

Effect of Cationic Micelles on the *E1cB* Mechanism of the Hydrolysis of Substituted *p*-Nitrophenyl Acetate

By Waichiro Tagaki,* Shohei Kobayashi, Koichi Kurihara, Akira Kurashima, Yasuhiro Yoshida, and Yumihiko Yano

(Department of Chemistry, Faculty of Technology, Gunma University, Kiryu, Gunma, Japan)

Summary The hydrolysis of $XCH_2CO_2C_6H_4NO_2-p$ catalysed by cetyltrimethylammonium bromide experiences a much larger micellar effect with $X=O_2NC_6H_4$ and PhS than with $MeOC_6H_4$ and PhO, in accord with the change in acidity of CH_2 group and suggesting a change of mechanism from ordinary addition-elimination under non-micellar conditions to an E1cB mechanism under micellar conditions.

THE micellar catalysed reactions of p-nitrophenyl esters of carboxylic acids with hydroxide ion have been extensively investigated.¹ All the evidence so far available seems to be consistent with a mechanism of fast incorporation of ester into the micelle followed by slow rate-determining attack of hydroxide ion on the ester carbonyl group. The rateaccelerating micellar effect, however, is rather small for simple cationic surfactants: for example, the cetyltrimethylammonium bromide (CTABr) micelle accelerates the rate 2 fold for acetate and 5 fold for hexanoate.² We have now observed unusually large micellar effects of CTABr on the hydrolysis of the substituted p-nitrophenyl acetates (1)—(4) when the substituent X can stabilize an α -carbanion.

Plots of pseudo-first order rate constants (k_{obs}) vs. CTABr concentration gave the usual saturation kinetics¹ for all the esters examined, to give the non-micellar (k_0) and micellar

rates (k_{ψ}) , plateau rate). The substituent effects on these k_0 and k_{ψ} values were very different, as illustrated by the rates for the four esters (1)—(4). The k_0 (× 10⁴ s⁻¹) values

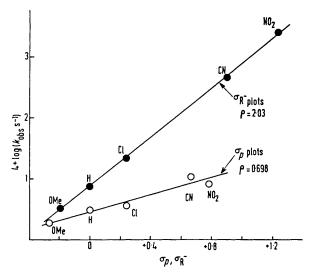


FIGURE. Hydrolysis of p-XC₆H₄CO₂C₆H₄NO₂-p esters: \bigcirc non-micellar rates (k_0) ; \bigoplus micellar rates (k_{ψ}) ; [CTABr] = 9 × 10⁻⁴M; pH 8.99; 25 °C.

were 33 (4), 14.6 (3), 8.33 (1), and 1.88 (2), in decreasing order of electron-withdrawing effect of X,³ and the k_{ψ} (× 10⁴ s⁻¹) values were 2490 (1), 287 (3), 41.7 (4), and 3.33 (2) (pH 8.99, 25 °C, [CTABr] = 9 × 10⁻⁴M). Thus the micellar effect (k_{ψ}/k_0) is unusually large for (1) and (3). It was also found that the pH-log k_{ψ} profiles for (1) and (3) indicate rate plateaus at around pH 8 and 10, respectively. The corresponding profiles for (2) and (4) and the pH-log k_0 profiles for the four esters did not indicate such a rate plateau but showed a linear increase of $\log k_0$ up to pH 11. Such rate plateaus at higher pH may suggest the formation of carbanions.⁴ The formation of carbanion at the methylene group with a good leaving p-nitrophenoxy group would lead to a change in the mechanism of hydrolysis from an ordinary addition-elimination mechanism under nonmicellar conditions to an ElcB mechanism under micellar conditions.⁵ This appears to be further substantiated by different substituent effects on the k_0 and k_{ψ} rates in the hydrolysis of p-substituted benzyl p-nitrophenyl esters [including (1) and (2)] as shown in the Figure; the log k_0 values vary linearly with Hammett σ_p constants⁶ to give $\rho(\sigma) = 0.698$, while the log k_{ψ} values vary linearly with $\sigma_{\rm R}^-$ constants⁷ to give $\rho(\sigma) = 2.03$. Thus the micellar reaction seems to take place by an E1cB mechanism involving carbanion and keten intermediates.⁵

A larger micellar effect for activated esters appears to be consistent with our previous observation that the ionization of the allyl methylene proton of sulphonium salts experiences a much larger micellar effect than that of the corresponding methyl protons.8 The carbon acidity of 4-nitrophenylacetonitrile has also been shown to experience a large micellar effect in a CTABr micelle.⁹ All these facts suggest a more stabilization for a more delocalised carbanion occurring in a micellar phase of cationic surfactant.

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Japan.

(Received, 26th May 1976; Com. 602.)

¹ J. H. Fendler and E. J. Fendler, 'Catalysis in Micellar and Macromolecular Systems,' Academic Press, New York, 1975.

² L. R. Romsted and E. H. Cordes, J. Amer. Chem. Soc., 1968, 90, 4404. ³ S. Oae, W. Tagaki, K. Uneyama, Y. Ikeda, and I. Minamida, Tetrahedron, 1968, 24, 5293.

⁴ Both p-nitrophenyl and phenylthio groups are known to stabilize α -carbanions: D. J. Cram, 'Fundamentals of Carbanion Chemis-y,' Academic Press, New York, 1975; S. Oae, W. Tagaki, and A. Ohno, *Tetrahedron*, 1964, **20**, 417; S. Oae, W. Tagaki, K. Uneyama, trv. and I. Minamida, *ibid.*, 1968, 24, 5283. Preliminary experiments indicated deuterium incorporation into the starting esters (1) and

(3) under heterogeneous conditions (suspension of ester in D_2O containing CTABr micelle). ⁵ An *ElcB* mechanism has already been reported for the hydrolysis of some activated esters under non-micellar conditions: A. Williams and K. T. Douglas, Chem. Rev., 1975, 75, 627; B. Holmquist and T. C. Bruice, J. Amer. Chem. Soc., 1969, 91, 2993, 3003; R. F. Pratt apd T. C. Bruice, ibid., 1970, 92, 5956.

¹ 1. Halt and H. C. Brown, J. Org. Chem., 1958, 23, 420.
⁷ A. I. Biggs and R. A. Robinson, J. Chem. Soc., 1961, 388; σ_p was used for Cl.
⁸ T. Okonogi, T. Umezawa, and W. Tagaki, J.C.S. Chem. Comm., 1974, 363.

⁹ M. J. Minch, M. Giaccio, and R. Wolff, J. Amer. Chem. Soc., 1975, 97, 3766.