\boldsymbol{X}-Ray Structures of the Hexanuclear Cluster Complexes $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]^{2-},\left[\mathrm{HOs}_{6}(\mathrm{CO})_{18}\right]^{-}$, and $\left[\mathrm{H}_{2} \mathrm{Os}_{6}(\mathrm{CO})_{18}\right] \dagger$

By Mary McPartlin
(Department of Chemistry, The Polytechnic of North London, London N7 8DB)
and Colin R. Eady, Brian F. G. Johnson, and Jack Lewis*
(University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW)

Summary X-Ray analyses of three osmium cluster complexes has shown that two, $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]^{2-}$ and $\left[\mathrm{HOs}_{6}-\right.$ $\left.(\mathrm{CO})_{18}\right]^{-}$, have the approximately regular octahedral structure expected for hexanuclear clusters with 86 valence electrons, but the third, $\left[\mathrm{H}_{2} \mathrm{Os}_{8}(\mathrm{CO})_{18}\right]$, has an unusual monocapped square-pyramidal Os_{6} arrangement.

Wade's theory ${ }^{1}$ applied to a transition metal M_{6} cluster with 86 valence electrons predicts an octahedral metal arrangement with seven skeletal bonding electron pairs. The recently characterised ${ }^{2}$ hexanuclear cluster complexes $2\left[\mathrm{Ph}_{3} \mathrm{PMe}\right]_{2}+\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]^{2-} \quad(\mathrm{I}), \quad\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]+\left[\mathrm{HOs}_{6}(\mathrm{CO})_{18}\right]^{-}$ (II), and $\left[\mathrm{H}_{2} \mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$ (III) provide a unique opportunity for X-ray structural studies of a series of Os_{6} clusters, with 86 valence electrons, which differ only in the charge and the number of H -ligands present.

Table. Crystal data for (I), (II), and (III).

Compound	(I)	(II)	(III) $\cdot 0 \cdot 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Crystal class	Trigonal	Triclinic	Monoclinic
Space-group	$P \overline{3} 1 c$	Pl	$P 2_{1} / c$
$a(\AA)$	12.045	9.508	16.607
b	12.045	$16 \cdot 690$	$15 \cdot 564$
c	$24 \cdot 767$	$18 \cdot 170$	$22 \cdot 303$
$\alpha\left({ }^{\circ}\right)$	(90)	97.83	(90)
β	(90)	97.80	$90 \cdot 97$
γ	120	$90 \cdot 05$	(90)
Z	2	2	8
No. of unique	739	2928	3502
$(I) / \sigma(I) \geqslant$	$3 \cdot 0$	$3 \cdot 0$	$2 \cdot 5$
Anisotropic	Os, P, CO	Os, P	Os
R-value	$0 \cdot 057$	$0 \cdot 067$	$0 \cdot 059$

Data for the crystals are listed in the Table. The intensities were measured with very small crystals [maximum dimensions: (I), 0.08; (II), 0.1; and (III), 0.05 mm] using a Philips PW 1100 four-circle diffractometer and graphite single crystal monochromatised $\mathrm{Mo}-K_{\alpha}$ radiation. Full-
matrix least-squares refinement was used, and the phenyl rings were treated as rigid groups (C-C, $1.395 \AA$).

Figure 1. The structure of the $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]^{2-}$ anion in (I) showing the Os-Os bond lengths (\AA). E.s.d.'s average $0.004 \AA$. Average Os-C bond length $1 \cdot 83(5) \AA$.

The structure of the $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]^{2-}$ anion in (I) is shown in Figure 1. The anion has crystallographic D_{3} symmetry but for clarity the related bonds and atoms are labelled separately. There are two equivalent parallel faces that are exactly equilateral (Os-Os, $2 \cdot 876 \AA$). These are slightly twisted from O_{h} symmetry so that the remaining bonds alternate long ($2.886 \AA$) and short ($2.814 \AA$). Molecular orbital calculations ${ }^{3}$ using an idealised O_{h} geometry for $\left[\mathrm{Co}_{6}(\mathrm{CO})_{14}\right]^{4-}$ give a closed shell configuration for the

[^0]anion; more generally the stability of octahedral structures, for other $\mathrm{M}_{\mathbf{6}}$ clusters with 86 valence electrons, has been related to this. ${ }^{4}$ However, exact O_{n} symmetry for the metal atoms in such clusters is extremely rare, and $\left[\mathrm{Os}_{3}-\right.$ $\left.(\mathrm{CO})_{18}\right]^{2-}$ has D_{3} not O_{h} symmetry of the Os_{6} core. Possibly the presence of three terminal carbonyls per osmium atom, which prevents the anion as a whole having higher than D_{3} symmetry ($D_{3 d}$ is ruled out by impossibly close $\mathrm{O}-\mathrm{O}$ contacts) gives rise to metal-ligand interactions such that distortion of the Os_{6} core from O_{h} to D_{3} symmetry is necessary to produce a closed shell configuration for the ground state of this cluster. It should be noted however that even the $\left[\mathrm{Co}_{\mathbf{6}}(\mathrm{CO})_{14}\right]^{4-}$ anion, geometrically capable of exact overall O_{n} symmetry, is found from X-ray studies to have significant differences in its Co -Co lengths and approximate $D_{3 d}$ symmetry. ${ }^{5}$

Figure 2. The structure of the $\left[\mathrm{HOs}_{8}(\mathrm{CO})_{18}\right]^{-}$anion in (II) showing the $\mathrm{Os}-\mathrm{Os}$ bond lengths (\AA). E.s.d.'s average $0.003 \AA$. Average Os-C bond length $1 \cdot 90(5) \AA$. The face-bridging hydrogen is above $\mathrm{Os}(1), \mathrm{Os}(2)$ and $\mathrm{Os}(3)$.

The anion in (II), $\left[\mathrm{HOs}_{6}(\mathrm{CO})_{18}\right]^{-}$, has the octahedral structure shown in Figure 2. One triangular face, $\mathrm{Os}(\mathbf{1})$, $\mathrm{Os}(2)$, and $\mathrm{Os}(3)$, has significantly longer edges (mean Os-Os $2.973 \AA$) than any of the other Os-Os bonds (mean $2 \cdot 863 \AA$) and the carbonyl ligands appear to be pushed back from this face. This is consistent with a face-bridging hydrogen bonded to $\operatorname{Os}(\mathbf{1}), \mathrm{Os}(2)$, and $\mathrm{Os}(3)$, as described previously. ${ }^{2}$ Similar long edges, for two opposite triangular faces, in the octahedral cluster complex $\left[\mathrm{H}_{2} \mathrm{Ru}_{6}(\mathrm{CO})_{18}\right]$ (IV) were attributed to the two face-bridging hydrogens. ${ }^{6}$

The structure of the neutral dihydride $\left[\mathrm{H}_{2} \mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$ (III) is shown in Figure 3; the cluster has non-crystallographic C_{s} symmetry. Its ${ }^{1} \mathrm{H}$ n.m.r. spectrum (a doublet of doublets) ruled out the possibility of (III) having two symmetrical face-bridging hydrides as in $\left[\mathrm{H}_{2} \mathrm{Ru}_{6}(\mathrm{CO})_{18}\right] ;{ }^{6}$ a face and edge bridging hydride were tentatively suggested. ${ }^{2}$

The ${ }^{13} \mathrm{C}$ n.m.r. spectrum at low temperature is consistent $\left(1: 1: 1: 1: 2: 2: 2: 2: 2: 4,-85^{\circ} \mathrm{C}\right)$ with this solid state structure with the 2 H ligands lying on the plane of symmetry in, according to the ${ }^{1} \mathrm{H}$ n.m.r. spectrum, dissimilar
environments. At high temperature, coalescence occurs to produce a spectrum composed of three signals $(6: 6: 6$, $+100^{\circ} \mathrm{C}$), indicating that CO scrambling between $\operatorname{Os}(1)$ and $\mathrm{Os}(6)$ (or accidental degeneracy) is occurring. The positions of the hydride ligands are open to question. On the basis of ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ coupling and Os-Os bond lengths, one hydride ligand may be associated with an edge $\operatorname{Os}(2)-\mathrm{Os}(5)$ or $\mathrm{Os}(3)-\mathrm{Os}(4)$ and one with a triangular face $\mathrm{Os}(1)-\mathrm{Os}(3)-$ $\mathrm{Os}(4)$ [edges $0.05 \AA$ greater than the $\mathrm{Os}(2)-\mathrm{Os}(5)-\mathrm{Os}(6)$ face] or a square face $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{Os}(4)-\mathrm{Os}(5)$. The distribution of the carbonyl ligands, which are arranged well clear of the base of the pyramid, indicates that the hydrogen ligands may be associated with this square face.

Figure 3. The mono-capped square-pyramidal structure of $\left[\mathrm{H}_{2} \mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$ (III) showing the Os-Os bond lengths (\AA). E.s.d.s' average $0.004 \AA$. Average $\mathrm{Os}-\mathrm{C}$ bond length $1 \cdot 89(6) \AA$.

Although, as for (I) and (II), an octahedral Os_{6} arrangement was expected for this cluster, the observed monocapped square-pyramidal structure may also be rationalised in terms of Wade's theory. All transition metal carbonyl cluster compounds with 86 valence electrons are assumed to have seven skeletal electron pairs. For hexanuclear clusters these may be exactly accommodated in a closooctahedral metal arrangement, as in (I) and (II), whereas in M_{7} clusters seven skeletal electron pairs are accommodated

Figure 4. The mono-capped square-pyramidal metal arrangement in $\left[\mathrm{H}_{2} \mathrm{Os}_{6}(\mathrm{CO})_{18}\right.$] (dark bonds) related to the mono-capped octahedral structure of M_{7} clusters ($c f$. ref. 1).
in a mono-capped octahedral arrangement. ${ }^{1}$ It is fundamental to Wade's theory that closo- and nido-versions of the same polygon will accommodate the same number of
skeletal electron pairs. Therefore the mono-capped nidooctahedral (mono-capped square-pyramidal) structure of $\left[\mathrm{H}_{2} \mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$ (Figure 4) is an alternative for the accommodation of seven skeletal electron pairs in an M_{6} cluster. The mono-capped square-pyramidal arrangement rather than the octahedral may occur because of a preference of bridging hydrides for sites of lowest co-ordination as observed in borohydride chemistry.?
Clearly, this work shows that the structure of a cluster depends not only on the number of skeletal electron pairs available but also on the number and type of ligands present, e.g. $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]^{2-},\left[\mathrm{HOs}_{6}(\mathrm{CO})_{18}\right]^{-}$, and $\left[\mathrm{H}_{2} \mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$. Furthermore, it demonstrates that the metal must play a critical role in determining the stereochemistry, as the ruthenium and osmium clusters, $\left[\mathrm{H}_{2} \mathrm{M}_{6}(\mathrm{CO})_{18}\right]$, possess
different geometries; this relates to similar observations on the structures of the 86 valence electron complexes, $\left[\mathrm{M}_{3}(\mathrm{CO})_{6}\right]_{2}{ }^{2-}(\mathrm{M}=\mathrm{Ni}$ or Pt$) .{ }^{8}$

It is interesting to note that the two alternative structures, e.g. as with $\left[\mathrm{Os}_{8}(\mathrm{CO})_{18}\right]^{2-}$ and $\left[\mathrm{H}_{2} \mathrm{Os}_{8}(\mathrm{CO})_{18}\right]$, may be derived from $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$ by breaking and where appropriate reforming suitable $\mathrm{Os}-\mathrm{Os}$ bonds within the bicapped tetrahedral structure.

We thank the S.R.C. for financial support, Dr. G. Sheldrick for his ShelX computer programme and Trinity Hall (Cambridge) and The Salters' Company for Fellowships (to C.R.E.).
${ }^{1} \mathrm{~K}$. Wade, Adv. Inorg. Chem. Radiochem., 1976, 18, 1.
${ }^{2}$ C. R. Eady, B. F. G. Johnson, and J. Lewis, J.C.S. Chem. Comm., 1976, 302.
${ }^{3}$ D. M. P. Mingos, J.C.S. Dalton, 1974, 133.
${ }^{4}$ R. Mason, K. M. Thomas, and D. M. P. Mingos, J. Amer. Chem. Soc., 1973, 95, 3802.
${ }^{5}$ V. Albano, P. L. Bellon, P. Chini, and V. Scatturin, J. Organometallic Chem., 1969, 16, 461.
${ }^{6}$ M. R. Churchill and J. Wormald, J. Amer. Chem. Soc., 1971, 93, 5670.
${ }^{7}$ R. E. Williams, Adv. Inorg. Chem. Radiochem., 1976, 18, 91.
${ }^{8}$ J. C. Calabrese, L. F. Dahl, A. Cavalieri, P. Chini, G. Longoni, and S. Martinengo, J. Amer. Chem. Soc., 1974, 96, 2616.

[^0]: \dagger No reprints available.

