New Examples of the Metal Basicity of Iron Pentacarbonyl

By Philip A. W. DEAN,* DAVID G. IBBOTT, and G. MICHAEL BANCROFT

(Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada)

Summary $Fe(CO)_5$, though a weak base, forms adducts with strong acid salts including $Cd(AsF_6)_2$, $Sn(SbF_6)_2$, and $Fe(SbF_6)_2$; in the adducts, the $Fe(CO)_5$ behaves as a weak Fe-donor ligand to the metal cation.

THOUGH metal basicity of transition metal carbonyls is well-known,¹ very few adducts of $Fe(CO)_5$ with Lewis acids have been reported, a marked contrast with the extensive chemistry of the isoelectronic $[Mn(CO)_5]^-$. One of the main factors responsible for the limited acid-base chemistry of $Fe(CO)_5$ is undoubtedly its weak basicity which is exemplified by its protonation only in strong acids² and by the ease of dissociation of its HgCl₂ adduct.³

During our investigations of the interaction of weak bases with metal salts of strong acids we have found that $Fe(CO)_5$ has a much more extensive acid-base chemistry than the foregoing suggests, forming adducts with a wide range of metal cations in the weak donor solvent liquid sulphur dioxide. Thus, for example, the recently prepared⁴ unsolvated hexafluoroarsenate of cadmium(II)[†] and hexafluoroantimonates of tin(II) and iron(II) react with $Fe(CO)_5$ in liquid SO_2 ;[‡] the products are shown in the Table

† Cadmium(II) hexafluoroantimonate^{4b} behaves similarly.

together with pertinent Mössbauer data. Using an excess of $Fe(CO)_5$, the pale yellow cadmium compound precipitates on mixing solutions of the components, insoluble $Sn(SbF)_6)_2$ is converted into the insoluble orange tin adduct on stirring and the SO_2 -soluble brown iron product is isolated by, removal of volatile components *in vacuo*.

TABLE

	Mö	ssbauer para	eters ^b	
Compounda		Centre shift	Quadrupole splitting	
$[HFe(CO)_5]PF_6[Cd {Fe(CO)_5}_2](AsF_6)_2$		$0.11 \\ 0.22$	1.32° 1.30°	
$[Fe{Fe(CO)_5}_2](SbF_6)_2$	Fe ⁰ Fe ¹¹	$0.29 \\ 1.69$	0.98° 2.15ª	
$[\operatorname{Sn} \{\operatorname{Fe}(\operatorname{CO})_{5}\}](\operatorname{SbF}_{6})_{2}$	Fe ⁰ Sn ¹¹	0·29 3·764	0.74° 1.40ª	

^a All new compounds gave satisfactory analytical data. ^b In mm s⁻¹ at 80 °C. ⁵⁷Fe and ¹¹⁹Sn centre shifts are given relative to sodium nitroprusside and barium stannate, respectively, at room temperature. Error ± 0.01 mm s⁻¹ except where noted. ^c The QS of [HFe(CO)_s]⁺ is probably negative (ref. 6a) and this is assumed to be the case for the other examples of co-ordinated Fe(CO)_s also. ^d Error ± 0.03 mm s⁻¹.

 \ddagger In agreement with the work of other workers (W. Strohmeier, J. F. Guttenberger, and G. Popp, *Chem. Ber.*, 1965, 98, 2248; E. H. Braye and W. Hubel, *Angew. Chem.*, 1963, 75, 345), we find Fe(CO)₅ in SO₂ solution to be stable for a matter of hours.

The ⁵⁷Fe Mössbauer spectra demonstrate the equivalence of both pentacarbonyl units in the cadmium and iron compounds. In none of the products is the 57Fe Mössbauer quadrupole splitting (QS) of the Fe(CO)₅ species large enough to be reasonably attributed to a five-co-ordinate iron [cf., the reported ${}^{5a}QS$ of Fe(CO)₅ is $2 \cdot 57 \text{ mm s}^{-1}$]. Rather the centre shifts (CS) and QS are of similar magnitude to those we find for $[HFe(CO)_{5}]^{+}$; the parameters for this cation are close to those expected^{6a,b} for the usually assumed octahedral geometry, confirming its C_{4v} symmetry. Evidently the $Fe(CO)_5$ is bound to the cation via iron in the metal salts also. The variation in the 57Fe Mössbauer parameters of the Fe-bound Fe(CO)₅ is consistent with $H^+ < [Cd\{Fe(CO)_5\}]^{2+} < [Fe\{Fe(CO)_5\}]^{2+} \sim Sn^{2+}$ being the order of σ -accepting ability,^{6b} though this order will include any attenuation due to cation-anion interactions.

As expected the new compounds all have v(CO) at higher frequencies than the parent $Fe(CO)_5$. In the common mulling agents, the i.r. spectra of all the products {and [HFe(CO)₅]⁺} give evidence for some dissociation of Fe(CO)₅, showing the Fe(CO)₅ unit to be intact in them. None of the adducts have i.r. bands in the region where a carbonyl bound by both C and O might be expected to absorb;^{1b} thus the iron atom of the $Fe(CO)_5$ is the only point of attachment.

The ⁵⁷Fe Mössbauer parameters of the iron cation in $[Fe{Fe(CO)_5}_2](SbF_6)_2$ are consistent with its being a quite ionic high-spin iron(II) ion, probably 6-co-ordinate.^{6c} (This compound therefore contains an unusual metal-metal bond involving high-spin divalent iron; the co-ordination sphere of the Fe^{II} must be completed by fluorine-bridging with the anion). Similarly the ¹¹⁹Sn Mössbauer CS of $[Sn{Fe(CO)_5}]_{-}(SbF_6)_2$ is characteristic of a relatively ionic tin(II) compound.^{5b} On the basis of these results it seems best to regard the Fe(CO)₅ adducts prepared here as complexes of the divalent metal ions in which Fe(CO)₅ is behaving as a weak Fe-donor ligand.

We are grateful to the National Research Council of Canada for financial support.

(Received, 8th July 1976; Com. 774.)

¹ (a) J. C. Kotz and D. C. Pedrotty, Organometallic Chem. Rev. (A), 1969, 4, 479 and references therein; (b) D. F. Shriver, J. Organometallic Chem., 1975, 94, 259, and references therein.

² A. Davison, W. McFarlane, L. Pratt, and G. Wilkinson, J. Chem. Soc., 1962, 3653; A. F. Clifford and M. D. Campbell, U.S. Atomic Energy Commission TID-18199, 1962 (Chem. Abs., 1964, 60, 15321f); Z. Iqbal and T. C. Waddington, J. Chem. Soc. (A), 1968, 2958.
³ H. Hock and H. Stuhlmann, Chem. Ber., 1928, 61B, 2097; D. M. Adams, D. J. Cook, and R. D. W. Kemmitt, J. Chem. Soc. (A), 1968, 1067.

⁴ (a) R. J. Gillespie and P. K. Ummat, unpublished observations quoted in B. D. Cutforth, R. J. Gillespie, and P. K. Ummat, *Rev. Chim. minérale*, 1976, 13, 119; T. Birchall, P. A. W. Dean, and R. J. Gillespie, *J. Chem. Soc.* (A), 1971, 1777; P. A. W. Dean, *J. Fluorine Chem.*, 1975, 5, 499; (b) P. A. W. Dean and D. G. Ibbott, unpublished results.

⁵ N. N. Greenwood and T. C. Gibb, 'Mössbauer Spectroscopy,' Chapman and Hall, London, 1971: (a) p. 222; (b) p. 381, and references therein.

⁶G. M. Bancroft, 'Mössbauer Spectroscopy: An Introduction for Inorganic Chemists and Geochemists,' McGraw-Hill, London, 1973: (a) p. 127; (b) p. 102; (c) p. 156.