X-Ray and Infrared Evidence of New Ligand Formation by Addition of 3,5-Dimethylpyrazole to the Cynate Group in a Copper(11) Complex

By JIŘÍ KOHOUT,* FEDOR VALACH, MÁRIA HVASTIJOVÁ, MICHAL DUNAJ-JURČO, and JÁN GAŽO (Department of Inorganic Chemistry, Slovak Technical University, 880 37 Bratislava, Czechoslovakia)

Summary Two forms of the compound $[Cu(NCO)_2 (dmpz)_2]$ have been prepared (dmpz = 3,5-dimethylpyrazole); in the nearly planar molecules of the α -form the uncoordinated dmpz nitrogen atom is linked to the carbon atom of the NCO group, thus forming a new chelating ligand with a bent NCO skeleton. We have prepared two forms (α and β) of the compound $[Cu(NCO)_2(dmpz)_2]$ (dmpz = 3,5-dimethylpyrazole), obtained by treating a suspension of Cu(NCO)_2(2,4-lutidine) in methanol¹ with 3,5-dimethylpyrazole at 5 and 50°C, respectively, followed by crystallization of the filtrates in a refrigerator. The α -form, violet needles, shows λ_{max} (diffuse reflectance, MgCO₃) 344, 526, and 642sh nm, 10⁶ χ_{M}

TABLE. I.r. frequencies (in cm⁻¹) and assignments for the NCO system in α - and β -forms of [Cu(NCO)₂ (dmpz)₂].^a

	Vas	vsb	δр	ρ
α	1694vs, br ^c 2221s, br ^a	1357s	756sh, 752s	512sh, 507m
β	1689vs, br ^c 2224vs, br ^d	1354s	758s	508s

 a s = strong, m = medium, w = weak, br = broad, v = very, sh = shoulder. b The proximity of 3,5-dimethylpyrazole bands renders this assignment less certain. c Unresolved splitting appears and the average frequency is given. d Measured for a saturated DMF solution.

In the i.r. spectra of both forms (Table) the ν_{as} (NCO) frequency occurs at *ca.* 1690 cm⁻¹, but it attains its usual value² (*ca.* 2200 cm⁻¹) after both compounds have been dissolved in DMF. In order to elucidate the reasons for these remarkable changes, we have carried out a single-crystal analysis of α -[Cu(NCO)₂ (dmpz)₂].

The experimental data were obtained on a Syntex fourcircle P2₁ computer-controlled diffractometer using Cu- K_{α} radiation. Crystals of α -Cu(C₆H₈N₃O)₂ are monoclinic, space group P2₁/c, with a = 13.697(7), b = 14.759(7), c = 7.463(3) Å, $\beta = 114.01(3)^{\circ}$, $D_{\rm m} = 1.62$ g cm⁻³ (by flotation), Z = 8, $D_{\rm c} = 1.63$ g cm⁻³. The structure was solved by the heavy-atom technique and was refined by a full-matrix least-squares procedure to R 0.121 for 1760 independent non-zero observed reflections.

The structure consists of discrete $Cu(dmpz.NCO)_2$ units (Figure), which are held together by van der Waals interactions and hydrogen bonds. The whole $Cu(dmpz.NCO)_2$ unit is nearly planar and the ligands are formed by bonding contact between one nitrogen atom of the dmpz molecule and a carbon atom of the NCO group. The ligands are bis-*trans*-co-ordinated to the copper(II) through the 'cyanate' and 'pyridine' nitrogen atoms. The Cu-N(NCO) and Cu-N(dmpz) bond lengths (Figure) are similar to the Cu-N bond lengths in other planar Cu^{II} complexes.³ The NCO skeleta are bent, with their oxygen atoms out of the Cu^{II} co-ordination sphere.

During formation of the complex nucleophilic addition of the dmpz molecule to the NCO group apparently takes place, with transfer of the imino-hydrogen to this group. Each atom of the NCO entity is approximately sp^2 hybridised and the bond distances suggest largely double bond character. For this reason the hydrogen is probably transferred to the nitrogen rather then to the oxygen of the NCO group; it seems, however, to be involved in the $N \cdots O$ hydrogen bonds between adjacent Cu(dmpz.NCO)₂ molecules.

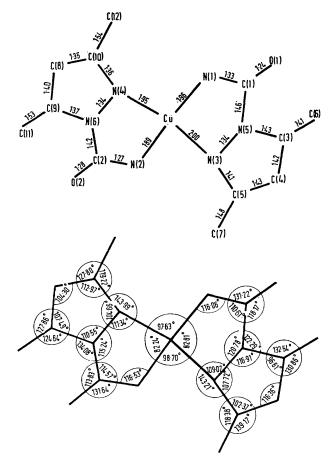


FIGURE. Bond lengths (Å) and angles in the structural unit of $\alpha\text{-}[Cu(NCO)_2(dmpz)_2].$

These structural features of the NCO system explain the positions of the v_{as} (NCO) and other NCO vibrations (Table). Strong bands at *ca.* 1215 cm⁻¹ would correspond to the stretching vibration of the (NCO)C-N(dmpz) linkage, which essentially a single bond in character. This bond is broken upon dissolution in DMF, giving normal linear NCO groups.

(Received, 7th July 1976; Com. 769.)

¹ J. Kohout, M. Quastlerová-Hvastijová, M. Kohútová, and J. Gažo, Monatsh., 1971, 102, 350.

² A. H. Norbury and A. I. P. Sinha, J. Chem. Soc. (A), 1968; M. Quastlerová-Hvastijová, J. Kohout, and J. Gažo, Z. anorg. Chem., 1973, 396, 341.

³ B. J. Hathaway and D. E. Billing, Co-ordination Chem. Rev., 1970, 5, 143.