Journal of

The Chemical Society,

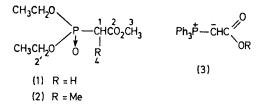
Chemical Communications

NUMBER 22/1976

17 NOVEMBER

Nuclear Magnetic Resonance Structural Study of Phosphonate Anions

By TEKLA BOTTIN-STRZALKO and JACQUELINE SEYDEN-PENNE (Groupe 12 du C.N.R.S., B.P. 28, 94320 Thiais, France)


and MARIE-PAULE SIMONNIN

(Laboratoire de Spectrographie RMN, ERA 390, ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris Cédex 05, France)

Summary It is shown by ³¹P, ¹³C, and ¹H n.m.r. spectroscopy that BuⁿLi and the phosphonates (1) and (2) in tetrahydrofuran give a single, planar, charge-delocalized species (A), whereas Bu^tOK and Bu^tOLi and (1) give another species (B) in addition to (A); the structure proposed for (B) is analogous to that of the lithium

In order to explain the reactivity of phosphonate anions, depending on the associated cation,¹ we have studied by n.m.r. spectroscopy the structure of the species formed in tetrahydrofuran (THF) solution from the phosphonates (1) and (2) with BuⁿLi, Bu^tOLi and [Bu^tOK (0.5M solution).

adducts of phosphorus ylides.

While the action of Bu^nLi leads to single species (1A) or (2A), the action of Bu^tOLi and Bu^tOK leads not only to species (A), but also to (B), the relative ratio (A): (B) depending on the cation (Li⁺ 65:35, K⁺ 35:65 at room

temperature). The main n.m.r. parameters of these species are in Tables 1 and 2.

In going from the phosphonates (1) or (2) to the corresponding species (A), the following are apparent: a large low-field shift for ³¹P and a smaller one for C(1) and C(2), and a very large increase in ${}^{1}J_{PC(1)}$, a large increase in ${}^{2}J_{PC(2)}$ and ${}^{1}J_{C(1)H}$, and the appearance of the long-range four-bond coupling ${}^{4}J_{PC(3)}$.

These results, more specifically the increase in ${}^{1}J_{C(1)H}$ and ${}^{1}J_{PC(1)}$, are in line with a change in hybridization of C(1) which becomes planar. Previous results² have shown that on going from C-H to C-Li ${}^{1}J_{CH}$ decreases when carbon remains sp^{3} hybridized but increases when it becomes sp^{2} . Furthermore, a low-field shift of the lithiated carbon resonance is also observed in the latter case. An increase, though smaller, in ${}^{1}J_{PC(1)}$ has been observed when comparing phosphonium salts with the corresponding ylides, the carbon atom of which being known to be planar.^{3,4}

Furthermore, the value of ${}^{4}J_{\rm PC(3)}$ suggests a W geometry of the four bonds and we attribute to species (A) the (ZZ) delocalized structure shown. Such a structure is in line with proposals made for related phosphorylated species from i.r. studies⁵ and for β -dicarbonyl anionic species from ¹H n.m.r. spectra.⁶

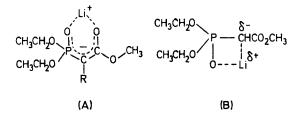
In going from the phosphonate (1) to species $(1B)^{\dagger}$ the following differences are observed compared with (1A): smaller low-field ³¹P and C(1) shifts, and a very small

[†] In the case of (2), ¹H n.m.r. spectra show that anion formation is incomplete with Bu^tOLi or Bu^tOK.

	δ(H-2′)	δ(³¹ P) ^a	$\Delta\delta(^{31}P)$	δC(1)	ΔδC(1)	δC(2)	δC(3)	δC(2')
(1)	4.08	18.6		34.5		166.7	$52 \cdot 1$	62.5
(2)	4.06	$22 \cdot 3$		3 9·8		170.4	52 ·1	62.7
(1A), Li ^{+b}	3.95	38.7	+20.1	41 ·0	+6.5	175.8	50.0	60.6
(2A), Li ⁺	3.85	$38 \cdot 9$	+16.6	48 ·0	+8.2	$173 \cdot 3$	49.7	60.2
(1 B), Li ⁺	4.12	$27 \cdot 9$	+9.3	36.3	+1.8	171.8	49.9	63.3
(1B), K ⁺	4·12	$27 \cdot 9$	+9.3	37.6	+3.1	170.7	49 ·6	62.2

TABLE 1. Chemical shifts

^a $\delta(^{31}P)$ values were determined by double resonance $^{1}H-\{^{31}P\}$ experiments and calculated according to the method of R. M. Le-Quan, M. J. Pouet, and M. P. Simonnin, Org. Magnetic Resonance, 1975, 7, 392. ^b Similar parameters were obtained for (1A), K⁺.


TABLE 2. Coupling constants

	¹ J _{PC(1)}	ΔJ	$^{2}J_{PC(2)}$	ΔJ	${}^{2}J_{\rm PC(4)}$	$4J_{PC(s)}$	¹ <i>J</i> с(1)н	ΔJ
(1)	132.9		5.8			a	130	
(2)	132.5		5.0		6.3	a		
(1 A), Li ^{+b}	$223 \cdot 1$	+90.2	21.7	+15.9		3.6	154.4	$+24 \cdot 4$
(2A), Li ⁺	$219 \cdot 2$	+86.7	28.6	+23.6	8.8	$2 \cdot 4$		
(1 B), Li+	134.4	+1.5	3.4	2.4		a	с	
(1B), K ⁺	129.8	3.1	$4 \cdot 0$	-1.8		а	с	

^a Not resolved. ^b Similar parameters were obtained for (1A), K⁺. ^c Not determined owing to the relative instability of species (1B).

change in ${}^{1}J_{PC(1)}$, a small decrease in ${}^{2}J_{PC(2)}$, and no longrange coupling ${}^{4}J_{PC(3)}$. These parameters are not compatible with an (EZ) planar charge-delocalized form. However, Gray⁷ has interpreted the n.m.r. parameters of ester ylides in terms of an important contribution of the charge-localized form (3).

Morover, lithium-associated phosphorus ylides^{3,4,8} have been assigned charge-localized adduct structures, with a P-C-Li angle of 90°. For these species, ${}^{1}J_{PC}$ and the ${}^{31}P$ shift are of the same order of magnitude as in the corresponding phosphonium salt. Taking these data into account we propose for (1B) the charge-localized structure shown with an Li+-O interaction in order to interpret the ³¹P downfield shift we have observed.

We thank the authors of ref. 8 for a preprint of this article.

(Received, 13th August 1976; Com. 935.)

- ¹ A. Redjal and J. Seyden-Penne, *Tetrahedron Letters*, 1974, 1733; B. Deschamps and J. Seyden-Penne, to be published. ² J. B. Stothers, 'Carbon-13 NMR Spectroscopy,' Academic Press, New York, 1972, pp. 208ff.; J. P. C. M. Van Dongen, H. W. D. Van Dijkman, and M. J. A. de Bie, *Rec. Trav. chim.*, 1974, 93, 30; R. Lett, G. Chassaing, and A. Marquet, *J. Organometallic Chem.*, 1976, 111, C17. ³ K. A. O. Starzewski and M. Feigl, J. Organometallic Chem., 1975, 93, C20, and references cited therein. ³ K. A. O. Starzewski and M. Feigl, J. Organometallic Chem. 1976, 41, 1168, and references cited therein.

 - ⁴ T. A. Albright and E. E. Schweizer, J. Org. Chem., 1976, 41, 1168, and references cited therein.
 ⁵ M. Kirilov and G. Petrov, Monatsh, 1972, 103, 1651.

 - ⁶ E. A. Noe and M. Raban, J.C.S. Chem. Comm., 1976, 165, and references cited therein.
 ⁷ G. A. Gray, J. Amer. Chem. Soc., 1973, 95, 7736.
 ⁸ K. A. O. Starzewski and H. Tom Dieck, to be published.