Crystal and Molecular Structure of Diacetyl-3,6-bicyclo-leuconolide $\mathbf{A}_{\mathbf{3}}$

By Arnaud Ducruix, Claudine Pascard,* Akira Nakagawa, and Satoshi Ōmura \dagger
(Institut de Chimie des Substances Naturelles du C.N.R.S., 91190, Gif-sur-Yvette, France,* and \dagger Kitasato University and The Kitasato Institute, Shirokane, Minato-ku, Tokyo 108, Japan)

Summary X-Ray crystal structure analysis of diacetyl3,6 -bicyclo-leuconolide A_{3} (3), obtained from 3,6-bicycloleucomycin $A_{3}(2)$, has led to the assignment of the stereochemistry at $\mathrm{C}-3, \mathrm{C}-9$, and $\mathrm{C}-17$ in the latter.

We have proposed a bicyclic structure with a $\mathrm{C}-\mathrm{C}$ bond between $\mathrm{C}-17$ and $\mathrm{C}-3$ in the aglycone ring ${ }^{1}$ for the compound obtained by treatment of leucomycin $\mathrm{A}_{3}(\mathbf{1})$ with lithium hydroxide in ethanol, whereas Osono et al. ${ }^{2}$ assumed that the same product from josamycin (leucomycin A_{3}) was an epimer with respect to the carbon atom to which the aldehyde group was attached. This point was cited as evidence for their tentative assignment that josamycin contains a 17 -membered lactone ring. The absolute configuration of the asymmetric carbon atoms of the

(1)

(2)

(3)
lactone ring of ($\mathbf{1}$), except for $\mathrm{C}-9$, has been established by an X-ray crystallographic study of the hydrochloride of the acid degradation product, demycarosyl iso-leucomycin $\mathrm{A}_{3} .{ }^{3}$ The absolute configuration at $\mathrm{C}-9$ was assigned
as (S) on the basis of the benzoate or Mill's rule for (1) and its derivatives. ${ }^{4}$ The absolute configuration at C--9 was later assigned as (R), on the basis of i.r. and n.m.r. spectroscopic data for (1) and 9-epi-leucomycin $\mathrm{A}_{3}{ }^{5}{ }^{5}$

Figure. Structure of diacetyl-3,6-bicyclo-leuconolide $\mathrm{A}_{\mathbf{3}}$ (3).

In order to resolve these differences and to determine the configuration at $\mathrm{C}-3$ as well as that at $\mathrm{C}-9$ and $\mathrm{C}-17$ of 3,6-bicyclo-leucomycin A_{3} (2), an X-ray crystallographic analysis of diacetyl-3,6-bicyclo-leuconolide $\mathrm{A}_{3}(3)$, obtained from (2), ${ }^{1,6}$ was performed.

The material crystallizes in the monoclinic space group $P 2_{1}$, with cell dimensions $a=11 \cdot 206, b=8 \cdot 248, c=$ $14 \cdot 272 \AA, \beta=107^{\circ} 66^{\prime}$ and $Z=2$. 2464 reflections were collected on a Philips automatic diffractometer, and the structure was solved by direct methods. ${ }^{7}$ Refinement led to a final R value of $5 \cdot 1 \%$.

The structure is shown in the Figure. There was some disorder for $\mathrm{C}(25)$ which adopts the two positions shown in the Figure. The geometry of the five-membered ring can be described as follows: $\Delta=8^{\circ}$ and $\phi=47^{\circ} 5^{\prime}$ (twisted half-chair). ${ }^{8}$ The planes defined by C-9, C-10, C-11, and $\mathrm{C}-12$ and that containing $\mathrm{C}-12, \mathrm{C}-13$, and $\mathrm{C}-14$ form an angle of 12°. Thus the general shape of the macrolide is very similar to that of demycarosyl-leucomycin A_{3} hydrobromide. ${ }^{3}$

From the known absolute configuration of the last compound ${ }^{3}$ and the relative stereochemistry of (3), established by this work, the absolute configurations of leuco-
diacetyl-3,6-bicyclo-leuconolide A_{3} are as shown in (1), (2), and (3) respectively. The configuration at $\mathrm{C}-9$ is (R). mycin A_{3} (josamycin), 3,6-bicyclo-leucomycin A_{3}, and
(Raceived, 20th August 1976; Com. 963.)
${ }^{1}$ S. Omura, A. Nakagawa, K. Suzuki, and T. Hata, J. Antibiotics, 1974, 27, 370.
${ }^{2}$ T. Osono, K. Moriyama, and M. Murakami, J. Antibiotics, 1974, 27, 366.
${ }^{3}$ M. Hiramatsu, A. Furusaki, T. Noda, K. Nawa, Y. Tomie, I. Nitta, T. Watanabe, T. Take, J. Abe, S. Ömura, and T. Hata, Bull. Chem. Soc. Japan, 1970, 43, 1966.
${ }^{4}$ S. Omura, M. Katagiri, T. Hata, M. Hiramatsu, T. Kimura, and K. Naya, Chem. and Pharm. Bull. (Japan), 1968, 16, 1402; S. Omura, A. Nakagawa, M. Katagiri, T. Hata, M. Hiramatsu, T. Kimura, and K. Naya, ibid., 1970, 18, 1501.
${ }^{5}$ L. A. Freiberg, R. S. Egan, and W. H. Washburn, J. Org. Chem., 1974, 39, 2474.
${ }^{6}$ S. Omura, A. Nakagawa, K. Suzuki, T. Hata, A. Jakubowski, and M. Tishler, J. Antibiotics, 1974, 27, 147.
${ }^{7}$ G. Germain, P. Main, and M. M. Woolfson, Acta Cryst, 1971, A27, 368.
${ }^{8}$ C. Altona, H. J. Geise, and C. Romers, Tetrahedron, 1968, 24, 13.

