Crystal and Molecular Structure of Diacetyl-3,6-bicyclo-leuconolide A₃

By Arnaud Ducruix, Claudine Pascard,* Akira Nakagawa, and Satoshi Ōmura†

(Institut de Chimie des Substances Naturelles du C.N.R.S., 91190, Gif-sur-Yvette, France,* and †Kitasato University and The Kitasato Institute, Shirokane, Minato-ku, Tokyo 108, Japan)

University and The Kitasato Institute, Shirokane, Minato-Ru, Tokyo 108, Japan)

Summary X-Ray crystal structure analysis of diacetyl-3,6-bicyclo-leuconolide A_3 (3), obtained from 3,6-bicycloleucomycin A_3 (2), has led to the assignment of the stereochemistry at C-3, C-9, and C-17 in the latter.

WE have proposed a bicyclic structure with a C-C bond between C-17 and C-3 in the aglycone ring¹ for the compound obtained by treatment of leucomycin A_3 (1) with lithium hydroxide in ethanol, whereas Osono *et al.*² assumed that the same product from josamycin (leucomycin A_3) was an epimer with respect to the carbon atom to which the aldehyde group was attached. This point was cited as evidence for their tentative assignment that josamycin contains a 17-membered lactone ring. The absolute configuration of the asymmetric carbon atoms of the

lactone ring of (1), except for C-9, has been established by an X-ray crystallographic study of the hydrochloride of the acid degradation product, demycarosyl iso-leucomycin A_3 .³ The absolute configuration at C-9 was assigned as (S) on the basis of the benzoate or Mill's rule for (1)and its derivatives.⁴ The absolute configuration at C-9 was later assigned as (R), on the basis of i.r. and n.m.r. spectroscopic data for (1) and 9-epi-leucomycin A₃.⁵

FIGURE. Structure of diacetyl-3,6-bicyclo-leuconolide A₃ (3).

In order to resolve these differences and to determine the configuration at C-3 as well as that at C-9 and C-17 of 3,6-bicyclo-leucomycin A_3 (2), an X-ray crystallographic analysis of diacetyl-3,6-bicyclo-leuconolide A_3 (3), obtained from (2),^{1,6} was performed.

The material crystallizes in the monoclinic space group $P2_1$, with cell dimensions $a = 11\cdot206$, $b = 8\cdot248$, $c = 14\cdot272$ Å, $\beta = 107^{\circ}$ 66' and Z = 2. 2464 reflections were collected on a Philips automatic diffractometer, and the structure was solved by direct methods.⁷ Refinement led to a final R value of $5\cdot1\%$.

The structure is shown in the Figure. There was some disorder for C(25) which adopts the two positions shown in the Figure. The geometry of the five-membered ring can be described as follows: $\Delta = 8^{\circ}$ and $\phi = 47^{\circ}5'$ (twisted half-chair).⁸ The planes defined by C-9, C-10, C-11, and C-12 and that containing C-12, C-13, and C-14 form an angle of 12°. Thus the general shape of the macrolide is very similar to that of demycarosyl-leucomycin A₃ hydrobromide.³

From the known absolute configuration of the last compound³ and the relative stereochemistry of (3), established by this work, the absolute configurations of leucomycin A₃ (josamycin), 3,6-bicyclo-leucomycin A₃, and diacetyl-3,6-bicyclo-leuconolide A_3 are as shown in (1), (2), and (3) respectively. The configuration at C-9 is (R).

(Received, 20th August 1976; Com. 963.)

- ¹S. Omura, A. Nakagawa, K. Suzuki, and T. Hata, J. Antibiotics, 1974, 27, 370.
 ²T. Osono, K. Moriyama, and M. Murakami, J. Antibiotics, 1974, 27, 366.
 ³M. Hiramatsu, A. Furusaki, T. Noda, K. Nawa, Y. Tomiie, I. Nitta, T. Watanabe, T. Take, J. Abe, S. Omura, and T. Hata, Bull. Chem. Soc. Japan, 1970, 43, 1966.
 ⁴S. Omura, M. Katagiri, T. Hata, M. Hiramatsu, T. Kimura, and K. Naya, Chem. and Pharm. Bull. (Japan), 1968, 16, 1402; S. Omura, A. Nakagawa, M. Katagiri, T. Hata, M. Hiramatsu, T. Kimura, and K. Naya, ibid., 1970, 18, 1501.
 ⁵L. A. Freiberg, R. S. Egan, and W. H. Washburn, J. Org. Chem., 1974, 39, 2474.
 ⁶S. Omura, A. Nakagawa, K. Suzuki, T. Hata, A. Jakubowski, and M. Tishler, J. Antibiotics, 1974, 27, 147.
 ⁷G. Germain, P. Main, and M. M. Woolfson, Acta Cryst, 1971, A27, 368.
 ⁸C. Altona, H. I. Geise, and C. Romers, Tetrahedron, 1968, 24, 13.

- ⁸ C. Altona, H. J. Geise, and C. Romers, Tetrahedron, 1968, 24, 13.