Large Long-range Coupling in the Electron Spin Resonance Spectra of the Bicyclo[2.1.1]hexan-1-yl Radical

By Takashi Kawamura* and Teijiro Yonezawa

(Department of Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606, Japan)

Summary The bridgehead proton hyperfine splitting constant of the bicyclo[2.1.1]hexan-1-yl radical is unexpectedly large (22.49 G); INDO calculations show that this is due to 'through-space' as well as 'throughbond' spin transfer from C-1 to 4-H.

THE e.s.r. spectrum of the bicyclo[2.1.1]hexan-1-yl radical was observed during irradiation of a cyclopropane solution bis(bicyclo[2.1.1]hexane-1-carbonyl) of peroxide at -116 °C. The g factor was 2.00257 + 0.00003. The spectrum was analysed as a doublet $(22.49 \pm 0.04 \text{ G})$ split further into three sets of 1:2:1 triplets (5.01 ± 0.01) , 2.01 ± 0.1 , and 0.84 ± 0.01 G). The assignment of the 22.49 G doublet to 4-H was straightforward from the molecular symmetry of the radical. The proton hyperfine splitting constants (h.f.s.c.) of the radical were calculated by the INDO method¹ (Table). INDO calculations were performed for the structure with 1-H removed from the

The bridgehead proton h.f.s.c. of the present radical is large in comparison with those of the 1-norbornyl $(2.45 \text{ G})^3$ and bicyclo[2.2.2]octan-1-yl (2.69 G)⁴ radicals. The

calculated results in the Table show the importance of both 'through-space' and 'through-bond' mechanisms for the large bridgehead proton h.f.s.c. of the present radical. In agreement with the significant bridgehead proton h.f.s.c., a non-empirical SCF LCAO MO study of the parent hydrocarbon revealed a strong interaction between the two bridgehead sites,⁵ and a large long-range coupling between

TABLE. INDO hyperfine splitting constants (in G) for the bicyclo[2.1.1]hexan-1-yl radical

$Z/\text{\AA}$	4-H ^a	<i>exo</i> -5-H	endo-5-H	3-H	2-H	$E/(\text{kcal mol}^{-1})^{\text{tr}}$
0.0	15.7 (8.0)	3.06	1.33	0.81	0.56	-0.8
0.1	21.4(10.4)	4.52	1.78	1.00	0.64	3.3
0.2	29·9 (13·9)	6.05	2.24	1.31	0.62	9.3
Obsd.	22.49	5.01	(2.01)	0.84,	0.0)	

^a Numbers in parentheses are h.f.s.c.s obtained in calculations in which the C-1--C-4 'through-space' interactions are artificially removed. ^b Calculated destabilization accompanying the artificial removal of the C-1-C-4 'through-space' interactions.

parent hydrocarbon² and also with structures in which C-1 was displaced Z Å inward along the C-1—1-H axis in the parent molecule. From a comparison between the calculated and observed h.f.s.c.s, the triplet splitting of 5.01 G is assigned to exo-5-H. Further experimental studies are needed for assignment of the remaining triplets. the bridgehead protons (7.0 Hz) was observed in the n.m.r. spectrum of 2-methylenebicyclo[2.1.1]hexane.⁶

This work was supported by a grant from the Ministry of Education.

(Received, 1st September 1976; Com. 994).

- ¹ J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Amer. Chem. Soc., 1968, 90, 4201. ² J. F. Chiang, J. Amer. Chem. Soc., 1971, 93, 5044. ³ T. Kawamura, M. Matsunaga, and T. Yonezawa, J. Amer. Chem. Soc., 1975, 97, 3234.
- P. J. Krusic, T. A. Rettig, and P. v. R. Schleyer, J. Amer. Chem. Soc., 1972, 94, 995.
 J. M. Lehn and G. Wipff, Theor. Chim. Acta, 1973, 28, 223.
- ⁶ R. S. H. Liu, Tetrahedron Letters, 1966, 2159; cf. T. Kawamura, M. Matsunaga, and T. Yonezawa, Chem. Letters, 1975, 867.