Chiral Crowns Incorporating Pyridyl Units and Tertiary Amine Functions

By Dale A. Laidler and J. Fraser Stoddart* (Department of Chemistry, The University, Sheffield S3 7HF)

Summary The chiral hosts DD-(1) and DD-(7) have been synthesised and the temperature dependence of the ¹H n.m.r. spectrum of the 1:1 complex between DD-(1) and benzylammonium thiocyanate in solution has been interpreted in terms of slow dissociation of the complex.

CHIRAL macrocyclic polyethers derived from (R)- and (S)binaphthol,^{1,2} L-tartaric acid,^{3,4} and D-mannitol³ as sources of chirality have been shown (i) to complex with primary alkyl ammonium salts¹⁻⁷ and (ii) to exhibit chiral recognition when the salt is racemic.^{1,2,6-7} Incorporation into achiral macrocycles of nitrogen atoms in the form of either pyridyl units^{6,7} or tertiary amine functions⁸ can lead to increased stabilities for the complexes formed with RNH₃+ cations partly as a result of stronger hydrogen bond formation involving the nitrogen atoms in the macrocycles. We now report on the kinetic and thermodynamic consequences for complexation of introducing nitrogen atoms into chiral macrocycles.

Condensation of 1,2:5,6-di-O-isopropylidene-D-mannitol⁹ with 2,6-bis(bromomethyl)pyridine¹⁰ in Me₂SO at 50 °C for 50 h with NaH as base gave (7.5%) the dipyridyl-18-

crown-6 derivative DD-(1), m.p. 147—149 °C, $[\alpha]_D - 22^\circ$ $(c 0.55, CHCl_3)$. Chirality and two tertiary amine functions were introduced diametrically into the 18-crown-6 constitution by utilising the previously reported^{2,3} 1,2:5,6-di-O-isopropylidene-3,4-di-O-(2-toluene-p-sulphonyloxyethyl)-D-mannitol D-(2) as starting material. Azide displacement of the tosyloxy groups in D-(2) proceeded smoothly with NaN₃ in Me₂NCHO at 110 °C for 2 h to give the bisazide D-(3) as an oil, $[\alpha]_{\rm D}$ + 20.8° (c 1.0, CHCl₃), in 86% yield after chromatography (Et₂O) on silica. Hydrogenolysis (Pt-C) of D-(3) in Et₂O afforded (90%) the non-crystalline diamine D-(4), which on reaction at 0 °C for 3 h with ClCO₂Et and NaOH in H₂O-Et₂O gave the bisurethane D-(5), $[\alpha]_{D} + 6.8^{\circ}$ (c 0.31, CHCl₃) as an oil in 75% yield. Condensation of D-(5) with the bistosylate D-(2) in Me₂SO at 50 °C for 15 h afforded (33%) the bisurethane DD-(6), $[\alpha]_D-11{\cdot}9^\circ$ (c 0.57, CHCl_3), which was reduced with $LiAlH_4$ in Et_2O (86%) to the NN-dimethyl-diaza-18crown-6 derivative DD-(7), m.p. 106-108 °C, $[\alpha]_D$ + 38.8° (c 2.02, MeOH), ¹H n.m.r. spectrum (CDCl₃): τ 5.55-6.58 and 7.12-7.65 (32H, m, CH₂ and CH protons), 7.75 (6H, s, $2 \times \text{NMe}$), and 8.60 and 8.66 (24H, $2 \times \text{s}$, $8 \times \text{Me}$).

FIGURE. The ¹H n.m.r. spectra of host DD-(1) (a) in CD_2Cl_2 at ambient temperature, and in CD_2Cl_2 with 1 equiv. of PhCH₂NH₃+-SCN⁻ added at (b) ambient temperature and at (c) -60 °C. The letters G and H indicate the guest and host signals respectively in (b).

Dynamic ¹H n.m.r. spectroscopy is a valuable technique for investigating the kinetics of complexation of hosts with metal¹¹ and RNH₃^{+ 8,12} guest salts. We have examined the temperature dependences of the ¹H n.m.r. spectra of the **1**:1 complexes formed between DD-(1), DD-(7), and DD-(8)^{3,5} and PhCH₂NH₃+SCN⁻ in CD₂Cl₂. In the case of the alloxygen host DD-(8), complexation-decomplexation is fast on the ¹H n.m.r. time scale even at -70 °C. However, the hosts DD-(1) and DD-(7) form complexes which show considerable temperature dependences in their ¹H n.m.r. spectra which are not evident in the spectra of the pure hosts. The Figure summarises our results for DD-(1). The spectrum of pure DD-(1) shows (Figure, a) an AB₂ system with $J_{AB} = 7.7$ Hz at $\tau 2.51$ and 2.94 for the pyridyl protons, an AB system with $J_{AB} = 13.0$ Hz at $\tau 5.11$ and 5.31 for the pyridyl CH₂ protons, a series of multiplets between τ 5.62 and 6.48 for the other CH₂ and CH protons, and two singlets at τ 8.64 and 8.70 for the Me protons. Addition of 1 equiv. of PhCH₂NH₃+SCN⁻ causes significant changes in the chemical shifts of the signals observed for the host and gives rise to supplementary peaks in the aromatic region between τ 2.69 and 3.20 for the phenyl protons of the guest and an AB system with $J_{AB} = 13$ Hz at τ 6.24 and 6.54 for the benzylic CH₂ protons of the guest (see Figure, b). On decreasing the probe temperature, all signals are found to broaden considerably below 0 °C before becoming slightly better resolved again at -60 °C (see Figure, c). In particular, the signals for the Me protons of the isopropylidene groups appear as three singlets at τ 8.58, 8.68, and 8.82 in the approximate ratio of 1:2:1 and coalesce at -35 °C to give the two signals observed at higher temperatures. We associate these spectral characteristics with slow dissociation of the complex rendering the isopropylidene groups on one side of the host diastereotopic in relation to those on the other side in a face-to-face complex. Provided the breaking and making of individual hydrogen bonds between the host and guest within the complex is still fast on the ¹H n.m.r. time scale, isopropylidene groups on the same face of the host will remain homotopic. Even if reorganisation of hydrogen bonds is slow on the ¹H n.m.r. time scale isochronous behaviour of the diastereotopic isopropylidene groups on each face could be observed. Either way, four singlets should be observed for the Me protons of the isopropylidene groups under conditions of slow complex

dissociation. On the assumption that the middle two singlets overlap, we have calculated rate constants, k_c of 22 and 32 s^-1, at the coalescence temperature (T $_{\rm c}$ $-35\,$ °C) for peak separations of 10.0 and 14.5 Hz respectively (see Figure, c) from the approximate expression $k_{c} =$ $\pi(\nu_{\rm A}-\nu_{\rm B})/\sqrt{2}$ for two-site exchange between groups of diastereotopic Me protons resonating at v_A and v_B . The derived free energy of activation for dissociation (ΔG_d^{\ddagger}) of the complex is ca. $12 \cdot 2 \text{ kcal mol}^{-1}$.

Stability constants defined as equilibrium constants $(K_a \text{ in } 1 \text{ mol}^{-1})$ for the equilibrium (1) were measured by an

$$\mathrm{RNH}_{3}^{+}\mathrm{SCN}^{-} + \mathrm{Host} \rightleftharpoons \mathrm{RNH}_{3}^{-}\mathrm{Host}^{+}\mathrm{SCN}^{-}$$
(1)

¹H n.m.r. spectroscopic method⁶ in CDCl₃. Values of $K_{\mathbf{a}}$ for DD-(1) (Bu^tNH₃⁺, 2·3 × 10²; PhCH₂NH₃⁺, > 2·0×10⁷) and DD-(7) (Bu^tNH₃⁺, 9.4×10^2) indicate that these diaza-crowns form much stronger complexes than the alloxygen-crown DD-(8) (Bu^tNH₃⁺, < 30; PhCH₂NH₃⁺, 2.1 \times 10⁵). Comparison of the derived free energy difference of ca. $9.9 \text{ kcal mol}^{-1}$ for complex formation between host DD-(1) and guest PhCH₂NH₃+SCN⁻ with the ΔG_d^{\ddagger} value of ca. $12 \cdot 2 \text{ kcal mol}^{-1}$ suggests that the free energy of association (ΔG_a^{\ddagger}) of the guest with the host is small (ca. 2.3 kcal mol⁻¹). This means that the association rate constant is ca. $10^{10} \, \mathrm{l \, mol^{-1} \, s^{-1}}$ which is characteristic of a diffusioncontrolled process and compatible with face-to-face complexation.

(Received, 24th August, 1976; Com. 977.)

- ¹ D. J. Cram, and T. L. Tarnowski, J.C.S. Chem. Comm., 1976, 661, and earlier communications in this series..
- ² W. D. Curtis, R. M. King, J. F. Stoddart, and G. H. Jones, *J.C.S. Chem. Comm.*, 1976, 284.
 ³ W. D. Curtis, D. A. Laidler, J. F. Stoddart, and G. H. Jones, *J.C.S. Chem. Comm.*, 1975, 833.
- ⁴ J.-M. Girodeau, J.-M. Lehn, and J.-P. Sauvage, Angew. Chem. Internat. Edn., 1975, 14, 764; J.-P. Behr, J.-M. Lehn, and P. Vierling, J.C.S. Chem. Comm., 1976, 621.
 - ⁵ W. D. Curtis, D. A. Laidler, J. F. Stoddart, and G. H. Jones, J.C.S. Chem. Comm., 1975, 835.
- ⁶ J. M. Timko, R. C. Helgeson, M. Newcomb, G. W. Gokel, and D. J. Cram, J. Amer. Chem. Soc., 1974, 96, 7097. ⁷ D. J. Cram, R. C. Helgeson, L. R. Sousa, J. M. Timko, M. Newcomb, P. Moreau, F. de Jong, G. W. Gokel, D. H. Hoffman, L. A.
- Domeier, S. C. Peacock, K. Madam, and L. Kaplan, Pure Appl. Chem., 1975, 43, 327. ⁸S. J. Leigh and I. O. Sutherland, J.C.S. Chem. Comm., 1975, 414; L. C. Hodgkinson, S. J. Leigh, and I. O. Sutherland, J.C.S. Chem. Comm., 1976, 639 and 640.
- E. Baer, J. Amer. Chem. Soc., 1945, 67, 338; G. Kohan and G. Just, Synthesis, 1974, 192.
- ¹⁰ M. Newcombe, G. W. Gokel, and D. J. Cram, J. Amer. Chem. Soc., 1974, 96, 6810.
- ¹¹ J.-M. Lehn, J.-P. Sauvage, and B. Dietrich, J. Amer. Chem. Soc., 1970, 92, 2916; J.-M. Lehn, Structure and Bonding, 1973, 16, 1; A. C. Coxon and J. F. Stoddart, Carbohydrate. Res., 1975, 44, Cl.
- ¹² D. J. Cram and J. M. Cram, Science, 1974, 183, 803.