Defluorination of Pentafluorosulphur Chloride and Pentafluorosulphur Bromide by Strong Nucleophiles

By Tomova Kitazume and Jean'ne M. Shreeve*

(Department of Chemistry, University of Idaho, Moscow, Idaho 83843)

Summary Strong nucleophiles, $(CF_3)_2C=NLi$ and $(CH_3)_2$ -NSi $(CH_3)_3$, readily defluorinate SF₅Cl and SF₅Br to form SF₃X=NCF(CF₃)₂, SFX[=NCF(CF₃)₂]₂, and trans-(CH₃)₂-NSF₄X (X = Cl,Br).

CURRENTLY there is considerable interest in the utilization of $SF_5Cl^{1,2}$ and $SF_5Br^{2,3}$ as reagents for introducing the SF_5 unit into a variety of unsaturated systems under freeradical conditions. However, with the exception of the base hydrolysis of SF_5Cl , little has been reported on the behaviour of SF_5 -containing compounds toward nucleophiles. Earlier workers indicated that SF_5Cl was reduced to SF_4 by PhLi,⁴ and that it oxidatively fluorinated substituted phosphorus(III) halides to phosphorus(v) fluorides,⁵ and oxidized a variety of organic compounds⁴.

We now report that both SF_5Cl and SF_5Br undergo smooth reactions with $LiN=C(CF_3)_2$, resulting in the replacement of sulphur-fluorine bonds by sulphur-nitrogen multiple bonds, accompanied by fluorine atom shifts [reactions (1) and (2)]. The sulphur-chlorine and sulphur-bromine bonds remain unaffected. This phenomenon of migration of fluorine with

$$SF_{5}X + LiN = C(CF_{3})_{2} \xrightarrow{-196 \text{ to } 25^{\circ}C} SF_{3}X = NCF(CF_{3})_{2} (1)$$
$$X = Cl (74\% \text{ yield}), Br (89\%)$$

$$SF_{3}X=NCF(CF_{3})_{2} + LiN=C(CF_{3})_{2} \xrightarrow{-196 \text{ to } 25 \text{ °C}} SFX[=NCF(CF_{3})_{2}]_{2} (2)$$
$$X = Cl (83\%), Br (87\%)$$

concomitant double bond shift occurs frequently in reactions which involve $(CF_{3})_2C=N^{-.6-8}$

In typical reactions, SF_5Cl^9 (7 mmol) was condensed into a Pyrex glass vessel which contained LiN=C(CF₃)₂⁷ (5 mmol) at -196 °C. The mixture was allowed to warm slowly to 25 °C and kept 24 h. After separation by trap-to-trap techniques, the colourless liquid, $SF_3Cl=NCF(CF_3)_2$, was recovered at -78 °C. $SF_3Cl=NCF(CF_3)_2$ (ca. 2 mmol) was condensed onto $LiN=C(CF_3)_2$ (1.5 mmol) and the reaction allowed to proceed as above. The colourless liquid, $SFCl[=NCF(CF_3)_2]_2$, was obtained.

TABLE				
		$\delta^{a}(SF_{A})$	$\delta(SF_B)$	- /
		/p.p.m.	/p.p.m.	J_{AB}/Hz
SF5Clb		-61.9	$-125 \cdot 4$	148.5
SF ₅ Br ^b		-62.0	$-145 \cdot 2$	143.1
$SF_{3}Cl=NCF(CF_{3})_{2}$		-59.5tr	-120.0 d	128
$SFC1[=NCF(CF_{3})_{2}]_{2}$	••	-71.6		
$SF_3Br=NCF(CF_3)_2$		-59.5 tr	139·5 d	125
$SFBr[=NCF(CF_3)_2]_2$	••	-91.5		

^a CCl.F internal reference. ^b C. I. Merrill, S. M. Williamson, G. H. Cady, and D. F. Eggers, Inorg. Chem., 1962, 1, 215.

Reactions with SF₅Br¹⁰ were carried out in the same manner. Both bromine-containing derivatives are pale yellow liquids.

These new compounds have been identified and characterised by i.r., n.m.r., and mass spectral techniques as well as by elemental analyses. Fluorine-19 n.m.r. spectral data indicate that the molecular geometry is changed from octahedral (SF₅X) to trigonal bipyramidal [SF₃X=NCF- $(CF_3)_2$ and to tetrahedral [SFX(=NCF{CF_3}_2)_2] (Table).

When mass spectral data are measured at 25 °C, M^+ ions are found for the chloro-derivatives and $(M - F)^+$ ions for the bromo-derivatives.

Also, we find that $(CH_3)_2NSi(CH_3)_3$ attacks SF_5X at -78°C to replace the axial fluorine atom and form the stable disubstituted sulphur hexafluoride derivative [reaction (3)].

$$SF_{5}X + (CH_{3})_{2}NSi(CH_{3})_{3} \xrightarrow{-78 \ ^{\circ}C} \\ trans-(CH_{3})_{2}NSF_{4}X + (CH_{3})_{3}SiF \\ X = Cl \ (75\%), Br \ (72\%)$$

Typically, SF₅X (3·5 mmol) and (CH₃)₂NSi (CH₃)₃ (3·0 mmol) were condensed together at -196 °C and allowed to warm slowly to -78 °C and to remain for 12 h. The pure liquid was obtained using trap-to-trap separation.

We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the National Science Foundation for support of this research.

(Received, 13th September 1976; Com. 1041.)

¹ N. H. Ray, J. R. Case, and H. L. Roberts, J. Chem. Soc., 1961, 2066, 2070; R. E. Banks, R. N. Haszeldine, and W. D. Morton, J. Chem. Soc. (C), 1969, 1947; H. W. Sidebottom, J. M. Tedder, and J. C. Walton, Trans. Faraday Soc., 1969, 65, 2103; Chem. Comm., 1970, 253; F. W. Hoover and D. D. Coffman, J. Org. Chem., 1964, 29, 3567; R. A. Bekker, B. L. Dyatkin, and I. L. Knunyants, Izvest. Akad. Nauk S.S.S.R., Ser. khim., 1970, 2738, (Chem. Abs., 1971, 74, 99366); D. D. Moldavskii and V. G. Temchenko, Zhur. Org. Khim., 1970, 6, 185, (Chem. Abs., 1970, 72, 89678).

² A. D. Berry and W. B. Fox, J. Fluorine Chem., 1975, 6, 175. ³ A. D. Berry and W. B. Fox, J. Fluorine Chem., 1976, 7, 449; J. Steward, L. Kegley, H. F. White, and G. L. Gard, J. Org. Chem., 1969, 34, 760.

⁴ H. L. Roberts, Quart. Rev., 1961, 15, 30.

⁵ C. J. W. Fraser, M. E. McCartney, D. W. A. Sharp, and J. M. Winfield, J. Inorg. Nuclear Chem., 1972, 34, 1455.

⁶ R. F. Swindell and J. M. Shreeve, J. Amer. Chem. Soc., 1972, 94, 5713.
⁷ R. F. Swindell, D. P. Babb, T. J. Ouellette, and J. M. Shreeve, Inorg. Chem., 1972, 11, 242.
⁸ J. A. Gibson and R. Schmutzler, Z. anorg. Chem., 1975, 416, 222.
⁹ C. J. Schack, R. D. Wilson, and M. G. Warner, Chem. Comm., 1969, 1110.
⁹ C. J. Schack, R. D. Wilson, and M. G. Warner, Chem. Comm., 1969, 1110.

¹⁰ T. A. Kovacina, A. D. Berry, and W. B. Fox, J. Fluorine Chem., 1976, 7, 430.