Boat Conformation of a Perhydro-1,3,2-Oxazaphosphorine Ring Containing Five-co-ordinate Phosphorus: X-Ray Crystal and Molecular Structures of 2,2-Bis-(\boldsymbol{p}-bromophenoxy)-2-dimethylamino-4,4,5,5-tetrakistrifluoromethyl-1,3,2-dioxaphosph(v)olan and 5-p-Bromophenoxy-10-methyl-2,2,3,3-tetrakis-trifluoromethyl-1,4,6-trioxa-10-aza-5-phosphaspiro[4.5]decane

By John H. Barlow, Stephen A. Bone, David R. Russell,* Stuart Trippett,* and Peter J. Whittle
(Department of Chemistry, University of Leicester, Leicester LE1 7RH)

Summary The preference for the equatorial plane of the lone-pair of nitrogen attached to trigonal bipyramidal phosphorus(v) is demonstrated in the molecular geometries, determined by X-ray crystallography, of 2,2 -bis-p-bromophenoxy-2-dimethylamino-4,4,5,5-tetrakistri-
fluoromethyl-1,3,2-dioxaphosph(v)olan and of $5-p$ -bromophenoxy-10-methyl-2,2,3,3-tetrakistrifluoromethyl-1,4,6-trioxa-10-aza-5-phosphaspiro[4.5]decane where the perhydro-oxazaphosphorine ring adopts a boat conformation.

A preference for the equatorial plane of lone-pairs on equatorial heteroatoms attached directly to phosphorus in trigonal bipyramidal (tbp) phosphoranes is supported by both calculation ${ }^{1}$ and experiment. ${ }^{2}$ We have ascribed an important role to this effect in determining the considerable preference of five-membered rings, containing hereroatoms directly bonded to phosphorus, for an apical-equatorial as

(1)
(2)
opposed to a diequatorial position in tbp five-co-ordinate phosphoranes. ${ }^{3}$ We now report the first X-ray analysis of a stable phosphorane showing clearly this preferred orientation in the case of an acyclic equatorial nitrogen and explore the consequences of the effect on the preferred conformations of phosphoranes containing six-membered rings with heteroatoms attached to phosphorus.
A single crystal X-ray analysis carried out on the dimethylaminophosphorane (1) confirmed that its geometry is essentially as depicted. The nitrogen is almost coplanar with its attached atoms (within $0.11 \AA$), and occupies an equatorial site of a slightly distorted trigonal bipyramid. The dihedral angle between the nitrogen plane and the tbp equatorial plane is 81°; the nitrogen lone-pair is therefore within 10° of its predicted orientation.

Crystal data: $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~F}_{12} \mathrm{NO}_{4} \mathrm{P}, M=751$, triclinic, $a=$ $21.62, b=8.07, c=8.02 \AA, \alpha=76 \cdot 1, \beta=102.3, \gamma=90.8^{\circ}$, $U=1326 \AA^{3}, Z=2, D_{\mathrm{c}}=1.88 \mathrm{~g} \mathrm{~cm}^{-3}$, space group $P \overline{1}$ assumed. 1169 Reflexion intensities measured by a Stoe Weissenberg diffractometer (λ for $\mathrm{Mo}-K_{\alpha}=0.7107 \AA$) have refined to $R=0.064$ using anisotropic thermal parameters for Br, F, and P , with phenyl rings treated as rigid groups.

Examination, using Dreiding models and $s p^{2}$ hydridised O, N, and S atoms, of 1,3,2-diheterophosphorinan rings in tbp phosphoranes shows that only in a boatring occupying an apical-equatorial position is it possible for the lone-pair on the equatorial heteroatom to be in the favoured equatorial
plane. This lone-pair effect is so large ($c a .10 \mathrm{kcal} \mathrm{mol}^{-1}$ with N and S and perhaps $5 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ with O^{3}) that it might be expected to over-ride the normal preference of the sixmembered ring for a chair conformation. We therefore carried out a single crystal X-ray analysis on the phosphorane (2) containing a perhydro-1,3,2-oxazaphosphorine ring.

Crystal data: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrF}_{12} \mathrm{NO}_{4} \mathrm{P}, M=622$, monoclinic, $a=26 \cdot 74, b=5 \cdot 138, c=38 \cdot 22 \AA, \beta=96.5^{\circ}, U=8518 \AA^{3}$, $Z=16, D_{\mathrm{c}}=1.94 \mathrm{~g} \mathrm{~cm}^{-3}$, space group $C 2 / c$ from systematic absences and structure. 2422 Reflexion intensities measured by a Stoe Weissenberg diffractometer (λ for $\mathrm{Cu}-K_{\alpha}=$ $1.5418 \AA$) refined to $R=0.118$ using anisotropic thermal parameters for Br, F, and P , with phenyl rings treated as rigid groups. The crystals deteriorate rapidly in the X-ray beam; two crystals were used in the data collection.

The two non-crystallographically related molecules of (2) have almost identical geometries; one is shown in the Figure with selected bond lengths averaged from the two molecules. Each molecule has a slightly distorted tbp geometry about the phosphorus atom. The nitrogen atom has a planar environment with the lone pair essentially in the equatorial plane. [The dihedral angles between the nitrogen planes and the $\mathrm{P}-\mathrm{N}-\mathrm{O}(1)-\mathrm{O}(2)$ planes are 6.5 and 4° for the two molecules]. The oxazaphosphorine rings are boat-shaped with torsion angles about the $\mathrm{C}(2)-\mathrm{C}(3)$ bonds of 6 and 13° for each molecule.

This striking preference for an apical-equatorial boat conformation in the five-co-ordinate state, if general for 1,3,2-diheterophosphorinan rings, is relevant to the confused situation surrounding the stereochemistry of nucleophilic substitutions at the phosphorus of 1,3,2-diheterophosphorinan 1 -oxides and 1 -sulphides. ${ }^{4}$ The most stable of the possible intermediates in these substitutions will have apical-equatorial boat six-membered rings and these could be formed either from higher energy chair five-co-ordinate intermediates or by nucleophilic attack on twist-boat

Figure. The molecular structure of $\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{Br}\right)\left[\mathrm{O}_{2} \mathrm{C}_{2}\left(\mathrm{CF}_{3}\right)_{4}\right]$ [$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMe}$], with all hydrogen atoms omitted. Average bond lengths, with e.s.d.s., for the two molecules are $P-N \quad 1 \cdot 63(2)$, $\mathrm{P}-\mathrm{O}(1) 1.62(1), \mathrm{P}-\mathrm{O}(2) 1.72(1), \mathrm{P}-\mathrm{O}(3) 1.64(2), \mathrm{P}-\mathrm{O}(4) 1.59(2)$, $\mathrm{N}-\mathrm{C}(1) \quad 1 \cdot 47(3), \mathrm{N}-\mathrm{C}(4) \quad 1 \cdot 45(3), \mathrm{O}(1)-\mathrm{C}(2) \quad 1 \cdot 42(3), \mathrm{C}(2)-\mathrm{C}(3)$ $1 \cdot 50(4), C(3)-C(4) 1 \cdot 50(4) \AA$.
conformations of the original oxides or sulphides. Different investigators study compounds having different ring substituents or having the phosphorus-containing ring fused to another six-membered ring. These changes will affect the energy differences and energy barriers between the chair and boat (or twist-boat) conformations in both the four- and five-co-ordinate states and could well be the source of some of the apparent confusion.

We thank the S.R.C. for financial support.
(Received, 30th September 1976; Com. 1111.)

[^0]
[^0]: ${ }^{1}$ R. Hoffmann, J. M. Howell, and E. L. Muetterties, J. Amer. Chem. Soc., 1972, 94, 3047.
 ${ }^{2}$ For leading references see E. L. Muetterties, P. Meakin, and R. Hoffmann, J. Amer. Chem. Soc., 1972, 94, 5674.
 ${ }^{3}$ S. A. Bone, S. Trippett, M. W. White, and P. J. Whittle, Tetrahedron Letters, 1974, 1795; S. A. Bone, S. Trippett, and P. J. Whittle, J.C.S. Perkin I, in the press ($6 / 1332$).
 ${ }^{4}$ E.g. J. M. Harrison, T. D. Inch, and G. J. Lewis, J.C.S. Perkin I, 1975, 1892 ; M. Mikolajczyk, J. Krzywanski, and B. Ziemnicka. Tetrahedron Letters, 1795, 1607; W. S. Wadsworth and R. L. Wulde, J.C.S. Chem. Comm., 1976, 93; and references therein.

