Desorption of an Intermediate in the Complete Oxidation of C_2H_4 over Silver Catalyst

By MASAYOSHI KOBAYASHI* and HARUO KOBAYASHI

(Department of Chemical Process Engineering, Hokkaido University, Sapporo, Japan)

Summary It was found by applying the transient response method that a stable intermediate was formed during the complete oxidation of C_2H_4 over a silver catalyst which

could be desorbed as acetic acid in a stream of pure H_2 , whereas it was not desorbed in pure He and it was decomposed to CO_2 and H_2O in a mixture of O_2 -He.

WE recently¹ demonstrated, by using the transient response method², the existence of a stable intermediate (In), of atomic composition $C:H:O = 1:2:(1\sim2)$, on the silver surface during the complete oxidation of C_2H_4 over silver. We have now attempted to desorb this intermediate without decomposition into CO_2 and H_2O .

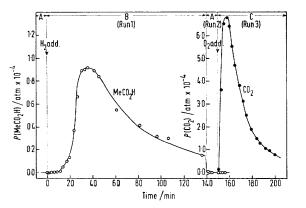


FIGURE. Desorption of (In) from the Ag surface under gaseous conditions. A: P° (He) = 1.0; B: P° (H₂) = 1.0; C: P° (O₂) = 0.20, P° (He) = 0.80 atm. T = 91 °C.

The transient response method and the catalyst used in the study are as reported previously.¹

After the reaction had attained steady-state conditions in a stream of mixed gases, $P^{\circ}(C_2H_4) = 0.021$, $P^{\circ}(O_2) = 0.20$, and $P^{\circ}(\text{He}) = 0.779$ atm at 91 °C, producing (In), the catalyst was reduced in a C_2H_4 -He mixture, with $P^{\circ}(C_2H_4) =$ 0.021 and $P^{\circ}(\text{He}) = 0.979$ atm, for 900 min until no CO₂ and C_2H_4O could be detected in the effluent gas stream, removing surface oxygen. The catalyst was then exposed to a pure He stream for 40 min until C_2H_4 was completely desorbed. He was then replaced by H_2 , effectively removing any remaining surface oxygen and the effluent gas was continuously analysed by g.l.c. with a Porapak Q column. Acetic acid was detected by its smell, retention time, and the i.r. spectrum of a liquified sample as shown by Run 1 in the Figure. The desorption of acetic acid was instantaneously stopped by reverting to pure He (Run 2). When the catalyst was exposed to an O_2 -He mixture, appreciable amounts of CO_2 and H_2O were observed but only the CO_2 desorption is shown (Run 3) in the Figure.

In the course of Run 1, the only component other than acetic acid detected was H_2O , produced by reduction of the surface with H_2 . The amounts of acetic acid desorbed in Run 1 and CO₂ formed by the decomposition of (In) in Run 3 were estimated to be 1.9×10^{-7} and 5.8×10^{-7} mol per g of Ag, respectively. The total amount, estimated from stoicheiometry, 9.6×10^{-7} mol CO₂ per g of Ag, is close to the value, 11×10^{-7} mol CO₂ per g of Ag, obtained when (In) was decomposed under steady-state conditions, the catalyst being directly exposed to an O₂-He mixture. This, together with the experimental results obtained above indicate that (In) is an adsorbed species which can desorb as acetic acid in H_2 but not in He even when the catalyst is heated to 108 °C and it is decomposed to CO₂ and H_2O in O₂-He.

Although it is very difficult to determine the form of (In) on the surface, the fact that it desorbs as acetic acid enables us to consider a structure involving retention of the carbon-carbon bond and to exclude the formaldehyde form which has been generally assumed so far.³

(Received, 28th September 1976; Com. 1101.)

¹ M. Kobayashi, M. Yamamoto, and H. Kobayashi, 6th Internat. Congress on Catalysis, A24, London, 1976.

- ² M. Kobayashi and H. Kobayashi, J. Catalysis, 1976, 27, 100; Shokubai, 1974, 16, (2), 8; Catalysis Rev., 1974, 10, 139.
- ³ L. Ya. Margolis, Adv. Catalysis, 1963, 14, 429.