The Hepta(μ_2 -benzenethiolato)pentacuprate(1) Dianion; X-Ray Crystal and Molecular Structure

By Ian G. Dance

(School of Chemistry, University of New South Wales, Kensington, N.S.W. 2033, Australia)

Summary Soluble benzenethiolato-cuprate(I) complexes $[Me_4N]_n[\{Cu_2(SPh)_3\}_n]$ and $[Me_4N]_2[Cu_5(SPh)_7]$ are formed in ethanol; the crystal structure of the latter is composed of $[Cu_5(\mu_2\text{-}SPh)_7]^{2-}$ molecular clusters containing linear and trigonal planar copper co-ordination.

As part of a systematic investigation of metal cluster complexes with monothiolate ligands,¹ we have sought copper compounds intermediate in molecularity and molecular size between $[Cu(SR)_2]^-$ (ref. 2) and the insoluble mercaptides $[CuSR]_n$ (ref. 3) (presumed to be non-molecular in at least one dimension).

From an ethanolic solution of $Cu(NO_3)_2$, $3H_2O$ (*ca.* 30 mM), PhSH (*ca.* 170 mM) and Bur_3N (*ca.* 170 mM), prepared in the absence of dioxygen at 75 °C, two different complexes may be crystallized by slow cooling after addition of tetraTABLE. $[Cu_5(SPh)_7]^{2-}$ cluster mean dimensions.

Dimension	No. of data	Mean	Average deviation from mean ^a	Range
Cutrig_S	12	$2 \cdot 27 \text{ Å}$	0·02 Å	2·23—2·33 Å
Cu ^{dig} _S	2	2·16 Å	0.002Å	
∠S-Cu ^{trig} _S	12	119·6°	8·1°	$104.7 - 137.1^{\circ}$
∠Cu-S-Cu	7	80·8°	4 ∙9°	75·0-88·0°
Edges of Cu ₅	7b	2·92 Å	0·14 Å	2·65—3·12 Å
polyhedron Cu ^{trig} deviation	4	0·12 Å	0·09 Å	0·00—0·21 Å

^a Computed crystallographic standard deviations are: Cu–Cu, 0·003 Å; Cu–S, 0·005 Å; ∠S–Cu–S, 0·2°; ∠Cu–S–Cu, 0·2°. ^b Excluding Cu(1)-Cu(2), 4.35 Å, Cu(1)-Cu(5), 4.28 Å, Cu(3)-Cu(4), 3.76 Å.

alkylammonium cation (ca. 110 mm). A bright yellow complex has composition $[R_4N]_2[Cu_5(SPh)_7]$, and a pale yellow complex, which occurs in at least two different crystal forms, has empirical composition (Me₄N)Cu₂(SPh)₃.† Both compounds are soluble in polar aprotic solvents, and oxidised by air.

The structure of the discrete $[Cu_5(\mu_2-SPh)_7]^{2-}$ cluster in crystalline [Me₄N]₂[Cu₅(SPh)₇][‡] is shown in the Figure. All the benzenethiolate ligands are doubly bridging, forming a copper(I)-sulphur polyhedron in which four copper atoms (Cutrig) possess trigonal planar co-ordination and the fifth [Cu(1), Cu^{dig}] almost linear (175°) two-co-ordination. The $\mathrm{Cu}_{\mathtt{s}}\mathrm{S}_{7}$ polyhedron without the phenyl substituents has approximately C_{2v} symmetry. Important cluster dimensions are summarised in the Table: it should be noted that (i) Cu^{trig}_S is 0.1 Å longer than Cu^{dig}_S; (ii) the Cu^{trig}_ S_{3} co-ordination is closely planar; (iii) average deviations from the mean of comparable angles are very much larger than crystallographic error, indicating substantial angular distortions.

The $[Cu_5(\mu_2-SPh)_7]^{2-}$ cluster structure may be regarded as derived from an idealised cluster $[Cu_4(\mu_2-SPh)_6]^{2-}$ in which a tetrahedron of trigonally planar co-ordinated copper atoms is located at the centres of opposite faces of a $(\mu_2\text{-SPh})_6$ octahedron, by replacement of SPh at one vertex by a linear $[(\mu_2-PhS)-Cu-(\mu_2-SPh)]$ unit, accommodated by increased separation of the Cu(3) and Cu(4)faces of the octahedron. In this idealised $M_4(SR)_6$ structure the M-M distance is only 15% longer than the M-S distance (d_{M-M}/d_{M-S}) is independent of d_{M-S} . One such short Cu-Cu distance, 2.65 Å [Cu(2)-Cu(5)], is retained in $[Me_4N]_2[Cu_5(SPh)_7]$. Although <0.1 Å longer than the interatomic contact in copper metal, this distance is believed to indicate only weak copper-copper bonding.⁴

This is the first crystal structure determination for a binary copper mercaptide complex with an arylthiolate ligand. The cluster architecture is significantly different from the regular trigonal bipyramid of copper atoms in $[Cu_5(\mu_2-SBu^{t})_6]^-$ (ref. 5). Crystalline $[Me_4N]_2[Ag_5(SPh)_7]$ is isostructural with its copper homologue.⁶

Pale yellow $[Me_4N]_n[Cu_{2n}(SPh)_{3n}]$ is subject to crystal instability which has hindered X-ray structure determination. Nevertheless, it has been determined that one crystal form contains the $[{\rm Me}_4{\rm N}]_4[{\rm Cu}_8({\rm SPh})_{12}]$ unit per asymmetric unit. As the solubility of this compound is

FIGURE. The $[Cu_{\delta}(\mu_2\text{-SPh})_7]^{2-}$ cluster in $[Me_4N]_8[Cu_5(SPh)_7]$.

very similar to that of [Me₄N]₂[Cu₅(SPh)₇] it is most probable that $[Me_4N]_4[Cu_8(SPh)_{12}]$ contains a molecular cluster Two reasonable structures, with doubly bridging anion. benzenethiolate ligands and trigonal copper co-ordination, can be proposed for a $[Cu_8(SPh)_{12}]^{4-}$ cluster. One contains copper atoms at the centres of 8 non edge-sharing faces of an S_{12} icosahedron (/Cu-S-Cu 97.6°), and the other has copper atoms at the centres of the triangular faces of an S_{12} cubo-octahedron (\angle Cu-S-Cu 109.5°).

Financial support from the U.S. National Science Foundation is gratefully acknowledged.

(Received, 18th November 1975; Com. 1287.)

† Satisfactory elemental analytical data were obtained.

 $\ddagger Crystal data: a = 12.250(1), b = 20.151(4), c = 11.531(2) Å, \alpha = 103.50(1), \beta = 90.01(1), \gamma = 83.20(1)^{\circ}; \text{ space group P1}; 3682$ observed diffractometer data, Mo- K_{α} radiation; R = 0.061.

¹ I. G. Dance and J. C. Calabrese, *J.C.S. Chem. Comm.*, 1975, 762. ² The only well characterized example is $[Et_4N][Cu(SC_6F_5)_2]$: W. Beck, K. H. Stetter, S. Tadros, and K. E. Schwarzhans, *Chem. Ber.* ¹ Jobs protocols and K. E. Schwarzhans, *Chem. Ber.*

1967, 100, 3944, 3955. ³ W. E. Duncan, E. Ott, and E. E. Reid, *Ind. Eng. Chem.*, 1931, 23, 387; D. C. Bradley and C. H. Marsh, *Chem. and Ind.*, 1961, 361. 4 The distance pertinent to Cu-Cu overlap considerations would be > 2.65 Å, as the angle between the normals to the planes of trigonal co-ordination for Cu(2) and Cu(5) is ca. 110°.

⁵ I. G. Dance, J.C.S. Chem. Comm., 1976, 68.

⁶ I. G. Dance, to be published.