New Synthesis of Pentacovalent Phosphorus Compounds of Cyclic Acyloxy- and Amido-phosphoranes

By Takeo Saegusa,* Shiro Kobayashi, and Yoshiharu Kimura
(Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto, Japan)

Summary The reactions of 2 -phenyl-1,3,2-dioxaphospholan (1) with acrylic acid (2a) and with acrylamide (2b) afford the pentacovalent cyclic acyloxy (3a) and amido-phosphoranes (3b), respectively.

Much attention has recently been paid to pentacovalent phosphorus compounds because of both the stereochemistry and the chemical reactivity associated with the biologically important phosphate esters. ${ }^{1,2}$ We report a versatile, novel method for preparation of pentacovalent cyclic phosphoranes. The cyclic acyloxy- (3a) and amido-phosphoranes (3b) were obtained in good yields by the singlestep reactions of 2 -phenyl-1,3,2-dioxaphospholan (1) with acrylic acid (2a) and with acrylamide (2b), respectively. In both cases a hydrogen-transfer process is involved.

The reaction of (1) and (2a) in diethyl ether at $25^{\circ} \mathrm{C}$ for 15 h yielded needle-like crystals of ($\mathbf{3 a}$) $\dagger(92 \%)$, m.p. $80^{\circ} \mathrm{C}$ (from chlorobenzene, hygroscopic); $\nu_{\max }(\mathrm{KBr})$ $1735(\mathrm{C}=\mathrm{O})$ and $1025(\mathrm{P}-\mathrm{O}-\mathrm{C}) \mathrm{cm}^{-1}$; $\delta\left({ }^{1} \mathrm{H}\right)\left(\mathrm{CD}_{3} \mathrm{CN}\right)$, $2 \cdot 0-3 \cdot 2(\mathrm{~m}, 4 \mathrm{H}), 3 \cdot 4-4 \cdot 5(\mathrm{~m}, 4 \mathrm{H})$, and $7 \cdot 4-8 \cdot 1(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{31} \mathrm{P}$ n.m.r. (HCONMe ${ }_{2}$) +2.9 p.p.m. (relative to $\mathrm{H}_{3} \mathrm{PO}_{4}$ external standard). ${ }^{12}$ Furthermore, preliminary X-ray results show that (3a) adopts a trigonal bipyramidal phosphorane structure. \ddagger

The reaction of ($\mathbf{1}$) with ($\mathbf{2 b}$) in acetonitrile at $50^{\circ} \mathrm{C}$ gave white crystals of $(\mathbf{3 b}) \dagger(71 \%$ yield after 25 h$), \mathrm{m} . \mathrm{p} .158^{\circ} \mathrm{C}$ (from MeCN , hygroscopic) ; $\nu_{\max }(\mathrm{KBr}) 3400$ and 3175 (NH),

1680 and $1640(\mathrm{C}=\mathrm{O})$, and $1065(\mathrm{P}-\mathrm{O}-\mathrm{C}) \mathrm{cm}^{-1} ; \delta\left({ }^{1} \mathrm{H}\right)$
$\left(\mathrm{CD}_{3} \mathrm{NO}_{2}\right) 1 \cdot 7-3.0(\mathrm{~m}, 4 \mathrm{H}), 3 \cdot 4-4 \cdot 2(\mathrm{~m}, 4 \mathrm{H})$, and $7 \cdot 3-8 \cdot 0$
$(\mathrm{m}, 5 \mathrm{H}) ;{ }^{31} \mathrm{P}$ n.m.r. $\left(\mathrm{HCONMe}_{2}\right)+23.4$ p.p.m.

To our knowledge, (3a) and (3b) are the first reported examples of crystalline pentacovalent cyclic acyloxy- and amido-phosphoranes. A five-membered cyclic acyloxyphosphorane has been implicated as an intermediate in the hydrolysis of phosphoenolpyruvate esters. ${ }^{2}$ The 5-oxo-l,2-azaphospholidine ring system, as in (3b), was hitherto unknown.

We thank Dr. Y. Chokki, Takeda Pharmaceutical Co., Osaka, Japan, for the ${ }^{31} \mathrm{P}$ n.m.r. spectra.
(Received, 23rd March 1976; Com. 302.)
\dagger Satisfactory elemental analyses were obtained.
\ddagger Detailed X-ray crystallographic results will be published elsewhere, in collaboration with Professor Y. Higuchi of Osaka City University.
${ }^{1}$ (a) F. Ramirez, Accounts Chem. Res., 1968, 1, 168; (b) F. H. Westheimer, ibid., p. 70; I. Ugi, D. Marquarding, H. Klusacek, P. Gillespie, and F. Ramirez, ibid., 1971, 4, 288; R. F. Hudson and C. Brown, ibid., 1972, 5, 204.
${ }^{2}$ V. M. Clark and A. J. Kirby, J. Amer. Chem. Soc., 1963, 85, 3705; S. J. Benkovic and K. J. Schray, ibid., 1969, 91, 5653 ; G. D. Smith, C. N. Caughlan, F. Ramirez, S. L. Glaser, and P. Stern, ibid., 1974, 96, 2698; F. Ramirez, S. L. Glaser, P. Stern, I. Ugi, and P. Lemmen, Tetrahedron, 1973, 29, 3741.

