Reaction of the Active >C=N- Group with Alkenes: Synthesis of $\gamma\delta$ -Unsaturated α -Amino-acids

By OSMAN ACHMATOWICZ JR.* and MAREK PIETRASZKIEWICZ

(Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01-224 Warsaw, Poland)

Summary n-Butyl N-(toluene-p-sulphonyl)iminoacetate reacts with alkenes to produce high yields of ene adducts which are readily convertible into $\gamma\delta$ -unsaturated α -amino-acids.

ALTHOUGH the ene reaction of alkenes with many reactive multiple bonds (C=C, C=C, C=O, S=O, N=N, etc.)

has been studied,¹ so far an enophile containing an iminogroup has not been described. We now report the first example of an ene reaction involving the active >C=N-

- ¹ H. M. R. Hoffman, Angew. Chem. Internat. Edn., 1969, **8**, 556. ² R. Albrecht and G. Kresze, Chem. Ber., 1965, **98**, 1431.
- ³ L. Fowden, Abh. Deutsch. Akad. Wissenschaften, Berlin, 4-Int. Symposium Biochemie und Physiology der Alkaloide, 1969, 31.
- ⁴ J. E. Walker and E. P. Abraham, Biochem. J., 1970, 118, 563.

group. n-Butyl N-(toluene-p-sulphonyl)iminoacetate (2), prepared by the reaction of n-butyl glyoxylate with N-sulphinyltoluene-p-sulphonamide,² reacts with alkenes (1) to produce ene adducts (3) (Table).

			TABLE		
R 1	Olefin (1)	P 3	Time/hª	Yield (%)	M.p.
н	н	н	24	70	47-48
Н	Me	Ĥ	16	$\ddot{78}$	39-40
Me	н	н	16	75	Oilc
н	н	Me	10	79	"
H	Et	н	8	90	**
Me	Me	Н	8	91	**
H	Pr	н	8	88	**
H	Н	\mathbf{Ph}	4	92	,,
-CH,-CH,-		н	20	56	72
-CH,-CH,-CH,-		н	16	81	61

^a Reaction temperature 120 °C. The reaction can be carried out catalytically at room temperature in the presence of Lewis acids. ^b All adducts (3) gave satisfactory analyses and consistent i.r. and ¹H n.m.r. spectra. ^c Distilled at 170 °C and 10⁻⁴ Torr (air bath temperature).

The adducts (3) are readily convertible by standard procedures without affecting the position or configuration of the double bond into the corresponding $\gamma\delta$ -unsaturated α -amino-acids. This reaction offers a novel approach to the synthesis of α -amino acids, and particularly those of nonprotein origin, which often incorporate in their structure a double bond at the $\gamma\delta$ -position³ or a functional group which could be derived from the latter.4

(Received, 21st April 1976; Com. 441.)