Synthesis of Ten- and Eleven-vertex Hydridometallocarbaboranes by Oxidative Addition

By Chu W. Jung and M. Frederick Hawthorne*

(Department of Chemistry, University of California, Los Angeles, California 90024)

Summary The reaction of $NaC_2B_7H_{12}$ with $[MCl(PR_3)_3]$ (M = Rh, Ir; R = Ar) and $[RuHCl(PPh_3)_3]$ produced the *closo*-metallocarbaboranes 6,6- $(PR_3)_2$ -6-H-6,2,3-MC_2B_7H_9 and 6,6- $(PPh_3)_2$ -6,2,3-RuC_2B_7H9 respectively; similar reaction of $[IrCl(PPh_3)_3]$ with $NaC_2B_8H_{11}$ produced the complex 1,1- $(PPh_3)_2$ -1-H-1,2,4-IrC_2B_8H_{10}.

RECENTLY we reported¹ the synthesis of catalytically active hydridometallocarboranes via formal oxidative addition of the *nido*-carbaborane anions 7,8- and 7,9- $C_2B_9H_{12}^{-1}$ to [MCl(PPh₃)₃] (M = Rh, Ir). We now describe

the extension of this reaction to other *nido*- or *arachno*- carbaborane anions containing bridging hydrides.

Treatment of [RhCl(PPh₃)₃] with an ethereal solution of NaC₂B₇H₁₂² produced a yellow compound (Ia). The i.r. spectrum of (Ia) in Nujol contained a medium intensity band at 2081 cm⁻¹ assigned to Rh–H stretching. Its ¹H-decoupled, 80.5 MHz ¹¹B n.m.r. spectrum in CH₂Cl₂ consisted of broad singlets at τ -23.6, 5.9, 19.5, 22.1, and 33.6 p.p.m. (rel. to external ref. BF₃·OEt₂) of relative areas 1:2:2:1:1 respectively. The 100 MHz ¹H n.m.r. spectrum of (Ia) in CD₂Cl₂ contained broad singlets at τ 2.80 (Ph) and 6.35 (carbaborane (CH) of relative intensities 15:1. Due to extensive PPh₃ dissociation, no rhodium hydride

resonance was observed in the high field region. However, a broad quartet centered at $\tau 23.45$ was observed in a

FIGURE. The proposed structures of (Ia) and (Ib) $[L = PPh_3 \text{ or }$ $C_{6}H_{4}Me-p_{3}$] (A); and (V) (B).

solution of (Ia) in 1.0 M PPh₃ in CH₂Cl₂; upon ³¹P decoupling this resonance collapsed to a broad doublet with I(Rh-H) 16 Hz. The analogous complex (Ib) with the less labile P $(C_6H_4Me-p)_3$ ligand did show the expected hydride resonance at τ 22.24 in CH₂Cl₂ as a triplet of doublets. This pattern is consistent with the hydride ligand being coupled to ¹⁰³Rh [/(Rh-H) 16 Hz] and two equivalent ³¹P nuclei [I(P-H) 25 Hz]; a similar pattern would be expected for (Ia) but was probably obscured by the broad signals

observed. The ¹H-decoupled ¹¹B n.m.r. spectrum of (Ib) is similar to that of (Ia): broad singlets of relative area 1:2:3:1 at -22.9, 7.25, 20.5, and 34.0 p.p.m. These data suggest the formulation of compounds (Ia) and (Ib) as 6,6-[PR₃]-6-H-6,2,3-RhC₂B₇H₉ (Figure). The iridium analogue of (Ia) can be prepared by similar reaction of $NaC_{2}B_{7}H_{12}$ with $[IrCl(PPh_{3})_{3}]$ [27% yield; v Ir-H (Nujol): 2201 cm⁻¹; τ (CD₂Cl₂): 2·79 (30H, m, Ph), 6·72 (2H, s br, carbaborane CH), and 24.47 [1H, t, IrH, J(P-H) 24.5 Hz]. Compound (Ia) catalyses alkene hydrogenation and isomerization with activities comparable with those of the previously reported $[RhH(PPh_3)_2(C_2B_9H_{11})]$ complexes.

The reaction of $[RuHCl(PPh_3)_3]$ with $NaC_2B_7H_{12}$ furnished deep blue needles of 6,6-[PPh3]2-6,2,3-RuC2B7H9 (III) in 89% yield; τ CD₂Cl₂: 2.78 (30H, m, Ph) and 6.19 (2H, s br carbaborane CH); ¹H-decoupled ¹¹B n.m.r. spectrum (CH_2Cl_2) : $\tau - 108$ (1B), -16.4 (1B), 4.17 and 5.86 p.p.m. (5B, overlapping resonances). Complex (III) was probably formed by the ready reductive elimination of H₂ from an intermediate complex $[RuH_2(PPh_3)_2(C_2B_7H_9)].$ This dihydrido complex was not detected, but the analogous $compound \quad 2,2\text{-}[PPh_3]\text{-}2,2\text{-}H_2\text{-}2,1,7\text{-}RuC_2B_9H_{11} \quad reversibly$ eliminates H_2 to form 2,2-[PPh_3]_2-2,1,7-RuC_2B_9H_{11} (IV) upon pyrolysis under reduced pressure.3 Unlike (IV), compound (III) does not oxidatively add H₂ at atmospheric pressure to form a dihydrido Ru^{IV} complex and show virtually no catalytic activity in alkene hydrogenation. Compound (III) reacts instantly with CO in toluene solution to give 6,6-[CO]₂-6-PPh₃-6,2,3-RuC₂B₇H₈. The derivative chemistry of (III) is extensive and will be reported elsewhere.

Similar treatment of [IrCl(PPh₃)₃] with NaC₂B₈H₁₁⁴ yielded yellow crystals of (V). The mass spectrum of (V) contained an envelope of parent peaks at m/e 836 with a cut-off at m/e 840 consistent with ¹⁹³Ir¹¹B₈³¹P₂¹²C₃₈¹H₄₁, μ Ir-H) (Nujol) 2133 cm⁻¹ (medium intensity); τ (CD₂Cl₂) 2.90 (30H, m, Ph), 6.88 and 7.60 (each 1H, s br, carbaborane CH), and 16.30 [1H, equal intensity q, J(P-H) 14 and 32 Hz, hydride H); the ¹H-decoupled ¹¹B n.m.r. spectrum (CH_2Cl_2) : $\tau - 55.2$, -10.1, -2.7, 6.0, 11.2, 24.8, and 45.0p.p.m. (all s br of relative area 1:1:1:1:1:2:1 respectively). The n.m.r. spectra are consistent with the absence of symmetry in (V),⁵ and with the formulation of (V) as the closo-complex $1,1-[PPh_3]_2-1-H-1,2,4-IrC_2B_8H_{10}$.

We thank Dr. C. Salentine for the ¹¹B n.m.r. spectra, Dr. K. N. Fang for the 100 MHz ¹H n.m.r. spectra, and the National Science Foundation for support.

(Received, 30th January 1976; Com. 098.)

- ¹ T. E. Paxson and M. F. Hawthorne, J. Amer. Chem. Soc., 1974, 96, 4674. ² F. N. Tebbe, P. M. Garrett, and M. F. Hawthorne, J. Amer. Chem. Soc., 1968, 90, 869. ³ H. S. Wong and M. F. Hawthorne, J.C.S. Chem. Comm., 1976, 257.

- ⁴ B. Stibr, J. Plešek, and S. Heřmánek, Coll. Czech. Chem. Comm., 1973, 38, 338.
 ⁵ T. E. Paxson and M. F. Hawthorne, unpublished results; W. J. Evans and M. F. Hawthorne, J. Amer. Chem. Soc., 1971, 93, 3063; C. J. Jones, J. N. Francis, and M. F. Hawthorne, ibid., 1972, 94, 8391.