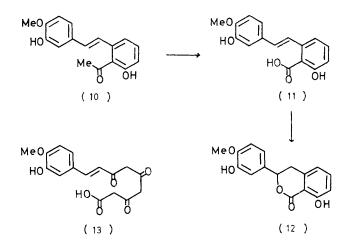

Biogenetic-type Synthesis of (\pm) -Phyllodulcin, a Sweet Principle of Hydrangea serrata Seringe var. thunbergii Sugimoto

By NAOKI TAKEUCI, MASAYUKI MURASE, KAZUE OCHI, and SEISHO TOBINAGA* (Showa College of Pharmaceutical Sciences, Tsurumaki, Setagaya-ku, Tokyo, Japan 154)

Summary The synthesis of (\pm) -phyllodulcin (12), a sweet principle of Hydrangea serrata Seringe var. thunbergii Sugimoto, from 3-(3-benzyloxy-4-methoxyphenyl)prop2-enal modelled on the polyketide mode of biosynthesis is described.

NUMEROUS synthetic attempts at the biogenetically modelled synthesis of polyketide-derived natural products have been reported.¹ The main interest has centred on the synthesis of β -polyketones and equivalent compounds and more recently on the mode of cyclization.² We report the



Bz = benzyl

synthesis of a naturally occurring isocoumarin, (\pm) -phyllodulcin (12), a sweet principle of Hydrangea servata Seringe var. thunbergii Sugimoto (Japanese name: Amacha: sweet tea),³ modelled on the polyketide mode of biosynthesis and synthesized from a $C_6-C_3-C_6$ precursor (13) derived from shikimic acid-acetate.⁴ The triketone intermediate (3) was synthesized from trans-3-(3-benzyloxy-4-methoxyphenyl) prop-2-enal, prepared from benzylisovanillin by Isler's procedure⁵ for lengthening the chain of an $\alpha\beta$ -unsaturated aldehyde by two carbon atoms, as follows. The foregoing aldehyde and 3-acetyl-2-hydroxy-6-methylpyran-4-one were condensed in pyridine in the presence of a catalytic amount of piperidine to give a condensation product (1) (89.7%), m.p. 178-179.5 °C, which was transformed into the dienaminoketone (2) (68.8%), m.p. 152-153.5 °C, by

heating at 100 °C with pyrrolidine (2 equiv.) in toluene. The enaminoketone (2) afforded the corresponding β -triketone (3) (89%), m.p. 140-142 °C, upon hydrolysis with aq. Ba(OH),

Although several attempts at the cyclization by an intramolecular Michael-type condensation of (3) were not successful, (2) gave the cyclized enaminoketone mixture (4) and (5), when treated with a mixture of acetic acid and pyrrolidine in EtOH-H₂O (10:1). The resultant mixture of (4) and (5) was reduced without separation with $LiAlH_4$ -AlCl₃⁶ to yield (6), which was oxidized under Pfitzner Moffatt oxidation conditions with dimethyl sulphoxidedicyclohexylcarbodi-imide to afford the diketone (7), m.p. 118—119.5 °C in an overall yield [from (2)] of 8.2%. The diketone (7) gave the stilbene (8), by halogenation with CuCl₂-LiCl followed by dehydrohalogenation with LiCl in dimethylformamide, yield 71.4%.

The structure of (8) was confirmed by direct comparison of the dibenzyl derivative (9), m.p. 95.5-96 °C, with an authentic sample synthesized from dibenzylphyllodulcin by conversion into the corresponding ester, m.p. 84.5-85.5 °C, treatment of the ester with NaOH in glycerine and methylation with diazomethane, followed by reaction with MeLi to afford (9).

The dihydroxy-stilbene (10), m.p. 104-105 °C, obtained by acid hydrolysis of (8), was oxidized to the acid (11) by transformation into its pyridinium salt by reaction with pyridine and iodine, followed by hydrolysis with aq. NaOH.[‡] The acid (11) was treated with cold conc. H_2SO_4 to afford the isocoumarin (\pm) -phyllodulcin (12), m.p. 128–130 °C. The synthetic isocoumarin was identical with natural phyllodulcin in all respects except its optical rotation.

(Received, 29th June 1976; Com. 729.)

† Oxidation of (6) by Jones' reagent yielded only a dehydration product.

 \ddagger Oxidation of (8) and (9) by the described method did not afford the corresponding acids.

¹ T. Money, Chem. Rev., 1970, **70**, 553; Th. M. Harris, C. M. Harris, and K. B. Hindley, Fortschr. Chem. org. Naturstoffe, 1974, **31**, 217. ² Th. M. Harris, and P. J. Wittek, J. Amer. Chem. Soc., 1975, **97**, 3270; D. A. Grifin and J. Staunton, J.C.S. Chem. Comm., 1975, **675**; K. Balenovic and M. Poji, Tetrahedron Letters, 1975, **3427**. ³ Y. Asahina and J. Asano, Chem. Ber., 1929, **62**, 171; 1930, **63**, 429, 2049; 1931, **64**, 1252. ⁴ D. E. Hathway, Biochem. J., 1959, **71**, 533; T. A. Geissman, 'Biogenesis of Natural Compounds,' ed. P. Bernfeld, Pergamon,

Oxford, 1967, p. 743. ⁵ O. Isler, H. Lindlar, M. Montavon, R. Rüegge, and P. Zeller, *Helv. Chim. Acta*, 1956, **39**, 249.

⁶ J. M. Coulter, J. W. Lewis, and P. P. Lynch, Tetrahedron , 1968, 24, 4489.