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CH,O+ and C,H,O+ : High Barriers to Isomerisation and Low Barriers to 
Symmetry -allowed 1,l  -Elimination 

By RICHARD D. BOWEN and DUDLEY H. WILLIAMS* 
( University Chemical Laboratory, Lensfield Road, Cambridge CB2 1 EW) 

Summary Experimental and theoretical evidence is pre- 
sented to show that the alkoxy cations CH,O+ and 
C,H,O+ have surprisingly high barriers to 1,2-hydride 
shifts to the oxygen atom, but have very low barriers to 
1,l-elimination of H, from the or-carbon atom. 

+ 
IN earlier work,l we have shown that CHpOH undergoes 
symmetry-forbidden 1,2-elimination of H, in a reaction 
requiring ca. 330 kJ mol-l. The high internal energy 

+ 
required to dissociate CH,=OH was shown by deuterium 

labelling1p2 to be insufficient to cause any prior isomerisa- 
tion of the ion. Yet the reported heat of formation of the 
methoxy cation (CH,O+, 850 k J r n ~ l - l ) , ~  is only 140 k J 

mol-l higher than that of CH,=OH (710 kJ m ~ l - l ) . ~  These 

data imply that the barrier to the CH,=OH+CH,O+ 
isomerisation is >330 kJ mol-l, and that the barrier for 

the reverse reaction CH,O+ -+ CHpOH (occurring through 
the same channel) is >190 kJ mol-l. The latter barrier 
appears, at first sight, to be a remarkably high one to a 
symmetry-allowed 1,2-hydride shift which can lead to a 

+ 
+ 

+ 
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thermodynamically more stable product. In  contrast, in 
the gas phase a primary carbonium ion appears to rearrange 
to a secondary carbonium ion via a 1,2-hydride shift 
essentially without activation energy.5 s 6  

However, unambiguous experimental evidence for a 

barrier to the reaction CH,O+ -+ CHpOH is available from 
the work of Hiraoka and Kebarle.7 Using a pulsed, high- 
pressure mass spectrometer source, these workers were able 
to show that in a thermally equilibrated system, H, will 
add to the formyl cation in a reaction which is exothermic 
by 16 kJ mol-l. This exothermicity is calculated from the 
temperature variation of the equilibrium constant for the 
reaction, i .e .  the reaction is readily reversible. The adduct 
is formulated as CH,O+,7 as it clearly must be since 1,2- 
addition of H, to HC+=O would require an activation 
energy of ca. 220 kJ mol-l, if occurring by microscopic 

reversal of 1,2-elimination of H, from CH,=OH. Moreover, 

the reaction CH,=OH --f H W  + H, could not occur in a 
system in thermal equilibrium at  the temperatures employed 
(- 100 to - 165 "C).7 Thus, H, adds 1,l to the forrnyl ion, 
and dissociation of the adduct requires less energy than 

isomerisation to CHpOH. 
The product CH,O+ from the above H, + HC+=O 

reaction has A H f  810 kJ mol-l, and this should be an 
accurate value.' If i t  is indeed a more accurate value than 
the appearance potential value (850 k J mol-l) quoted 
earlier, then the barrier (3  230 kJ mol-l) derived for the 

CH,O+ -+ CH,=OH reaction is even higher than the one 
quoted at  the outset of this paper. 

We have sought confirmation of the above deductions by 

generating CH,O+ and CH,=OH in the mass spectrometer 
by ionisation and fragmentation of selected compounds. 
Since it appears that RCH,O+ ions lose H, through 1, l -  
elimination with a very small activation energy, precursors 
of these ions should give very low abundance RCH,O+ ions 

and high abundance RC=O ions. In contrast, CHFOH ions 
generated from RCH,OH compounds should give large un/e 
31 : 29 ratios since the m/e 31 +- 29 reaction has a very large 
activation energy. The experimental results are given in 
the Table. 

M / e  31 : 29 ratios in the  mass spectra (70 eV) of selected 

+ 

+ 
+ + 

+ 

+ 

+ 

+ + 

TABLE 

compounds 

Compound at threshold m/e 31 : 29 
Anticipated ion 

+ 
CH,CH,OH CH,=OH 11 : 1 
CF,CH,OH C H , = ~ H  1 1 : l  
CH,CH,CH,OH CH&H 15: 1 
CH,ONO, CH,O+ 0.08 : 1 
CH,OCH, CH,O+ 0.08 : 1 

The results strikingly confirm expectations, both CH,- 

ONO, and CH,OCH, producing extremely abundant HC=O 

ions. Furthermore, while CH,=OH loses H, in slow re- 
actions (metastable transitions) with a large kinetic energy 
release2 (140 k J mol-l) since the reaction is symmetry- 

forbidden,l the CH,O+ -+ HC=O reaction does not give a 
discernible metastable peak. Presumably this is because 

+ 
+ 

+ 

the symmetry-allowed reaction (see below) has a small 
activation energy and a relatively fast rise of the rate 
constant with energy, such that almost all the dissociations 
are relatively fast. 

Finally, we wished to establish that an acyl ion RC=O, 
when formed from a compound RCH,OX, does arise 
specifically by 1,l-elimination of H, from the oxygen- 
bound carbon even where other processes are possible. 
Ethyl nitrate produces in its 70 eV mass spectrum peaks a t  
m/e 43 (B) and 45 (A) in the ratio 20: 1 (Scheme 1). [1,1-2H,]- 
Ethyl nitrate produces under similar conditions peaks a t  
m/e 43 (B) and 47 (C) in the ratio 12: 1, with peaks a t  
m/e 44 and 45 being of negligible abundance relative to 

that at  un/e 43. The CH,C=O ion is therefore produced by 
a specific 1,l-elimination. 

+ 

+ 

- e  - -Ha  + 
CH,CH,ONO, - CH,CH,O+ ---+ CH,C=O 

(B) , m/e 43 

--D, + 

-NO2 
(A) , m/e 45 

CH,CD,ONO, --+ CH,CD,O+ -+ CH,C=O 
-e 

-NO, 
(C), un/e  47 (B), nz/e  43 

SCHEME 1 

The extremely small barrier to the reaction CH,O++ 

HC=O + H, is supported by earlier orbital symmetry 
arguments.8 1,l-Elimination from an sp3 carbon adjacent 
to a vacant p-orbital is a symmetry-allowed process. 

+ 

SCHEME 2 

It remains to explain the high barrier ( B 230 kJ mol-l) 

to the reaction CH,O++CH,=OH. The hydride shift 
should occur so that bonding on to the vacant p-orbital on 
oxygen is possible in the transition state (1) -+ (2) (Scheme 

2). However, this results in the formation of CH,OH in 
which the lone-pairs of electrons on the oxygen atom are 
orthogonal to the vacant n-orbital on the carbon atom (3). 

Thus (3), formed in this manner, lacks all the n-stabilisa- 

tion of CH,=OH, but suffers all the destabilisation of the 

CH,OH cation which exists through a-electron withdrawal 
by the electronegative oxygen atom; i t  may plausibly 
represent the highest point on the potential surface of the 

CH,O+ -+ CHpOH isomerisation. The heat of formation 
of (3) may be estimated in the following manner. The 
difference in heats of formation of CH, and CH,+ is 1155 kJ 
mol-l ;Q the analogous change performed on methanol 
[CH,OH -+ (3)] should require a similar energy difference if 
n back-donation to the cationic centre did not occur, nor did 

+ 

+ 

+ 
+ 

+ 
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inductive destabilisation by oxygen. Lack of n-donation 
is precisely the situation which we wish to examine in (3). 
Inductive destabilisation will however be present in (3) ; 
calculations by Pople and his co-workers1° give an inductive 
destabilisation of a carbocation of 42 kJ mol-l when the 
oxygen atom is separated by one carbon atom from the 
cationic centre, and 13 kJ mol-l when it  is separated by 
two carbon atoms. In view of the rapid decrease of 
inductive effects due to an increase in the number of 
intervening o-bonds, it seems probable that the inductive 
destabilisation due to a directly bonded oxygen will not be 

less than 100 kJ mol-1. We therefore conclude that AH! 
(3) is 2 1055 kJ mol-l. Thus, a plausible transition state 

for the reversible reaction CH,=OH + CH,-0 appears to be 
energetically inaccessible a t  the high internal energies 

necessary to induce the reaction CHpOH +- HC=O + H,; 
this is in accord with the experimental facts. 

+ + 

+ + 
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