Carbene Photocycloelimination from a Vinyl-cyclopropane¹

By Michael Pallmer and Harry Morrison*
(Department of Chemistry, Purdue University, W. Lafayette, Indiana 47907)

Summary A novel photochemical fragmentation of a vinyl-cyclopropane to give a carbene derived product is reported.

There have been surprisingly few reports on the photochemistry of the simple vinyl-cyclopropane chromophore; these reactions apparently take place via homolytic fission

J.C.S. CHEM. COMM., 1978

of one of the cyclopropane bonds.2 During the course of another study, we prepared a rigid vinyl-cyclopropane for which such homolytic fission should be unproductive and find that this molecule undergoes a new, ready photochemical extrusion via a carbene intermediate.³

Photolysis of the tricyclic aryl-olefin (1a,b) leads to single primary photoproducts (2a,b) via an intramolecular 1,3-cycloaddition analogous to that observed for 6-phenylhex-2-ene4 [equation (1)]. Compound (2a) takes up 2 equiv. of hydrogen to give a tetrahydro-derivative, yet shows only two vinyl carbons at δ 128.68 (d) and 130.39 (d) in its ¹³C n.m.r. spectrum. The ¹H n.m.r. spectrum in CDCl₃ shows signals at δ 5.80—5.65 (1H, dd, J 2.0 and 5.5 Hz, olefinic H), 5.60-5.45 (1H, d, J 5.5 Hz, olefinic H), and 2.3-0.8 (16H, complex m, which includes a singlet at δ 0.98). Pyrolysis of (2a) induces the 1,5-hydrogen shift characteristic of such vinyl-cyclopropanes.4

Photolysis of (2a) results in a single product (3a). The structure of (3a) derives from its 1H n.m.r. and u.v. spectra. The cyclopentadiene resonances (δ 6.35, 6.09, and 5.98) and coupling constants (5.6, 2.0, and 1.4 Hz) match quite well with those of 1-methylcyclopentadiene (δ 6.25, 6.07, and 6.00; 5.4, 1.9, and 1.4 Hz).5 The u.v. transition $[\lambda_{\text{max}} \text{ (hexane) } 264 \text{ nm, } \epsilon 2520]$ is likewise consistent with

a cyclopentadiene chromophore. The vinyl group appears as an ABX pattern: δ 5.8—5.4 (1H, q, J_{AX} 18, J_{BX} 9 Hz) and 5.0-4.6 (2H, f_{AB} 2 Hz). The remaining signals are at $\delta 2.6-2.4$ (2H, t), 2.3-1.4 (9H, m), and 0.67 (3H, s). Photolysis of (2b) gives (3b). The product clearly results from a carbene cycloelimination followed by a 1,2-hydrogen shift (Scheme).

SCHEME Financial support of this research by the U.S. Army Research office is gratefully acknowledged.

(Received, 3rd April 1978; Com. 357.)

¹ For previous paper in the series 'Organic Photochemistry,' see D. D. Neidigk and H. Morrison, J.C.S. Chem. Comm., in the press.
² P. J. Kropp, J. Amer. Chem. Soc., 1967, 89, 1126.

³ Carbene formation from photolysis of aryl-cyclopropanes is well documented (G. W. Griffin, Angew. Chem. Internat. Edn., 1972, There is a possibility of such a reaction for a vinyl-cyclopropane having a conjugated ester (M. J. Jorgensen and C. H. Heathcock, J. Amer. Chem. Soc., 1965, 87, 5264), and an example involving a conjugated diene has recently been reported (R. G. Weiss and G. S. Hammond, ibid., 1978, 100, 1172).

4 W. Ferree, Jr., J. Grutzner, and H. Morrison, J. Amer. Chem. Soc., 1971, 93, 5502.

5 V. A. Korenevsky and N. M. Sergeyev, J. Amer. Chem. Soc., 1972, 94, 8586.

⁶ E.g., a 1,1,2-trialkylcyclopentadiene is reported to have λ_{max} (MeOH) 256 nm (ε 3850): L. L. Barber, O. L. Chapman, and J. D. Lassila, J. Amer. Chem. Soc., 1969, 91, 3664.