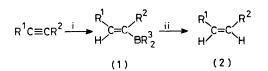

Protonolysis of Alkenylboranes under Neutral Condition by Treatment with Catalytic Amounts of Palladium Diacetate

By HIDETAKA YATAGAI, YOSHINORI YAMAMOTO,* and KAZUHIRO MARUYAMA (Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606, Japan)


Summary Alkenyldialkylboranes (1) from internal alkynes undergo easy protonolysis by catalytic amounts of Pd- $(OAc)_2$ to give the corresponding (Z)-olefins (2) in good yields.

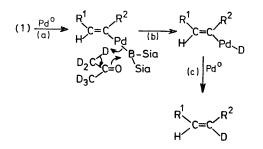
PROTONOLYSIS of alkenylboranes is an important synthetic reaction in organoborane chemistry and is frequently employed in natural product synthesis.¹ Under acidic² or basic³ conditions this reaction has several disadvantages, *e.g.* incompatibility with various acid- or base-sensitive functional groups and frequent need for high temperatures. We report a new, mild, neutral procedure using catalytic amounts of Pd(OAc)₂ at room temperature.

Scheme 1. i, R²₂BH; ii, Pd(OAc)₂, Et₃N, tetrahydrofuran.

We recently reported that treatment of alkenylboranes, prepared via hydroboration of terminal alkynes, with an equimolar amount of $Pd(OAc)_2$ in the presence of Et_3N produces (E)-olefins in good yields (Scheme 1).⁴ In an attempt to broaden the scope of this procedure we examined the reaction of alkenylboranes derived from internal alkynes. To our surprise, the reaction took an entirely different course; stereoselective protonolysis occurred (Scheme 2). Detailed investigation revealed that the reaction proceeded successfully in the presence of catalytic amounts of $Pd(OAc)_2$ (5—10 mol %) and in the absence of Et_3N ; the solvent itself acts a proton source. The results are summarized in the Table.

SCHEME 2. i, R³₂BH; ii, Pd(OAc)₂ (catalytic quantity).

As apparent from the Table, the applicability of the new method appears general for the internal alkenes (1). Similar


TABLE. Protonolysis of (1) with catalytic amounts of Pd $(OAc)_2$

(Scheme 2).«				
	(1)	. ,	Producte	Yield ^d /%
\mathbb{R}^{1}	Ŕ²	R^{3b}		(Isoln.)
Bu ⁿ	Bu ⁿ	Sia	(Z)-Dec-5-ene	`95 <i>´</i>
Bu ⁿ	Bun	$C_{6}H_{11}$,,	94
Hexn	Et	Sia -	(Z)-Dec-3-ene	(70)
\mathbf{Ph}	\mathbf{Ph}	Sia	cis-Stilbene	`69 ^e
Oct ⁿ	[CH ₂] ₇ CO ₂ Me	Sia	Methyl oleate	91
Bu ⁿ	H	Sia	Hex-1-ene	3 0 t

^a See text for details of conditions. ^b Sia (siamyl) = CHMeCHMe₂; C_6H_{11} = cyclohexyl. ^c All products were identified by ¹H n.m.r. and i.r. spectroscopy and/or comparison with authentic materials. ^d By g.l.c. analysis; yields are based on the alkynes. ^e Starting material was recovered in 24% yield, owing to incomplete hydrobation. ^t The starting borane was recovered in 70% yield.

treatment of alkenylboranes derived from terminal alkynes gave unsatisfactory results, however. The reaction proceeded in each case with >99%, stereoselectivity, as shown by g.l.c. and ¹H n.m.r. and i.r. spectroscopy. Other alkenylboranes, such as dec-5-enyldicyclohexylborane and bis(dec-5-enyl)chloroborane, reacted similarly, the latter giving 1 mol. of alkene. The reaction also proceeded smoothly in acetone.

The preparation of (Z)-dec-3-ene is representative. Dec-3-yne (5 mmol) was hydroborated with bis-(1,2dimethylpropyl)borane (5 mmol) in tetrahydrofuran (10 ml) at 0 °C. To this solution was added Pd(OAc)₂ (0.25 mmol),

with rapid flushing with nitrogen, and the resulting mixture was stirred overnight at room temperature. Evaporation, followed by filtration through a column of alumina using light petroleum afforded (Z)-dec-3-ene (70%).

A mechanistic rationale which readily accounts for the observed catalytic process and deuterium labelling studies in $(CD_3)_2CO$ is shown in Scheme 3; (a) oxidative insertion of Pdot into the C-B bond takes place followed by (b) Habstraction from the solvent, and (c) reductive elimination. In $(CD_3)_2CO$ 5-deuterio-(Z)-dec-5-ene was produced (isotopic enrichment 88%). In contrast to the alkenylboranes formed from terminal alkynes,⁴ the migration of the alkyl group of (1) from boron to the α -carbon must presumably proceed quite sluggishly.

We thank the Ministry of Education and J.S.P.S. for support.

(Received, 16th May 1978; Com. 525.)

+ Active Pd⁰ may be formed by the reaction of Pd(OAc)₂ with boranes in analogy with alanes, or by the addition of Pd(OAc)₂ to the double bond followed by Pd-H elimination.4

- ¹ C. A. Henrick, *Tetrahedron*, 1977, **33**, 1845; R. Rossi, *Synthesis*, 1977, 817.
 ² H. C. Brown, 'Organic Syntheses via Boranes,' Wiley, New York, 1975.
 ³ E. Negighi and K-W. Chiu, *J. Org. Chem.*, 1976, **41**, 3484.

SCHEME 3. Sia = CHMeCHMe₂

⁴ H. Yatagai, Y. Yamamoto, K. Maruyama, A. Sonoda, and S-I. Murahashi, J. C. S. Chem. Comm., 1977, 852.