Deuteriated Cyclopentadienyls of Thallium and Other Metals

By GORDON K. ANDERSON, RONALD J. CROSS* and IAN G. PHILLIPS (Chemistry Department, University of Glasgow, Glasgow G12 800)

Summary C5D5Tl can conveniently be prepared at room temperature from C_5H_6 , D_2O , and Tl_2SO_4 , and can be used to synthesise a variety of deuteriated cyclopentadienyls.

THE ease of preparation and handling of cyclopentadienylthallium¹ has led to its widespread use in the preparation of metal cyclopentadienyls,² and its employment in a number of organic syntheses, notably prostaglandin precursors.³ No serious attempt seems to have been made to produce a fully Partially deuteriated deuteriated analogue, however. cyclopentadiene, from C₅H₅Na and D₂O, has been used to prepare indium and thallium derivatives.⁴ Our attempts to convert C5H5Tl directly into its deuteriated analogues by treatment with D₂O, (CD₃)₂CO, CD₂Cl₂, or CDCl₃, with or without added acid or base catalysts, met with no success, owing probably to the low solubility of the thallium compound or to competing side reactions. (Cyclopentadienylthallium is known to react with CHCl₃:1 treatment of C_5H_5Tl with 8% D_2SO_4 in D_2O leads to $C_5H_5D^5$). We report here a simple one-pot synthesis of C5D5Tl from cyclopentadiene and D₂O.

In a typical experiment, 0.6 ml of freshly distilled cyclopentadiene was added to a solution of sodium deuteroxide, prepared under nitrogen from 1.84 g of sodium metal and 20 ml of D₂O (Fluorochem Ltd., 99.8% isotopic purity). The mixture was shaken vigorously for 3.5 h at room temperature, when 1.5 g of finely-ground thallium(1) sulphate was added, and the shaking continued for several hours more. The product was obtained by filtration and sublimation at 90 °C and 0.5 Torr. Mass spectroscopic analysis showed it to contain 90% of C_5D_5Tl (m/e at 275 and 273, from ²⁰⁵Tl and ²⁰³Tl respectively) with C₅D₄HTl making up the remaining 10%. This ratio corresponds closely to that expected $(89\cdot4\% C_5D_5Tl)$ from the overall ratio of D to H of the reagents employed, indicating that the base-catalysed redistribution of D and H is random. Lower ratios of D to H in the starting materials lead to the expected lower incorporation of deuterium in the final product, and this results in a more complex mixture of partially deuteriated products.

The rate of the exchange process is critically dependent on the concentration of NaOD, as would be expected from the base-catalysis mechanism (1). Thus when the amount of sodium used in experiments of the scale above is reduced to 0.3 g, maximum incorporation of deuterium into the cyclopentadiene requires 18 h at room temperature. During this time only a small fraction of the cyclopentadiene dimerises.[†] The high temperatures previously employed to avoid dimerisation⁶ are not necessary in this method, nor is the use of such solvents as $(Me_2N)_3PO.^7$

The mass spectrum of C₅D₅Tl resembles that of C₅H₅Tl,⁸ with a base peak of Tl⁺ and a strong molecular ion. The i.r. spectrum of a polycrystalline sample shows ν (C–D) at 2280 and 2320 cm⁻¹, with the strong characteristic C-D bending modes at 769 and 540 $\rm cm^{-1}$ (shifted from 1000 and 727 $\rm cm^{-1}$ respectively for the CH modes of $C_5H_5Tl^9$).

Some preliminary experiments confirm that the deuteriated thallium reagent simply transfers its cyclopentadienyl to other metals. Iron(II) chloride reacts in benzene^{2a} to form $(C_5D_5)_2$ Fe, previously obtained by a more difficult multi-stage route.¹⁰ Di-µ-chloro-bis-[2-(phenylazo)phenyl- C^2N']palladium¹¹ is readily converted into (PhN₂C₆H₄)Pd- (C_5D_5) . The mass spectrum of this latter compound shows a strong peak at m/e 249 corresponding to $C_6H_5N_2C_6H_4\cdot C_5D_4$ (found at m/e 245 in the fully protonated material), suggesting that the rearrangement involves loss of a cyclopentadienyl substituent. The ¹H n.m.r. spectrum of the palladium complexes shows a weak singlet at δ 5.8 due to the single ring proton from the small amount of the C_5D_4H material also present.

The C_5D_5Tl retains all the desirable features (air stability, ease of purification, etc) of the protonated analogue, and seems an obvious alternative to C₅D₅Li or C₅D₅Na which have been employed to date.¹² We believe that the 9:1 ratio of C_5D_5 to C_5D_4H obtained in our experiments is sufficiently good for most labelling requirements. A higher deuterium incorporation is theoretically possible using a greater D_2O : C_5H_6 ratio, but to make a significant improvement the expense becomes prohibitive. On a larger scale, more economic use of the D₂O can be made by using it in aliquot portions. Phase-transfer catalysis using a suitable organic solvent¹³ might be advantageous under these conditions.

The authors thank Johnson, Matthey and Co. for a loan of PdCl₂, and the S.R.C. for a research studentship (to G.K.A.).

$$C_5H_6 + OD^- \rightleftharpoons C_5H_5^- + HOD \rightleftharpoons C_5H_5D + OH^- etc.$$
 (1)

 \dagger Separate n.m.r. investigations showed that 50% of pure $C_{8}H_{6}$ dimerised over 3 days under those conditions, but 5% solutions in CDCl₃ showed no change at all in this time.

¹ E. O. Fischer, Angew. Chem., 1957, **69**, 207; F. A. Cotton and L. T. Reynolds, J. Amer. Chem. Soc., 1958, **80**, 269. ² See, for example, (a) C. C. Hunt and J. R. Doyle, Inorg. Nuclear Chem. Letters, 1966, **2**, 283: (b) R. B. King, Inorg. Chem., 1968, **7**, 90.

³ See, for example, N. M. Weinshenker, Prostaglandins, 1973, 3, 219; E. J. Corey, U. Koelliker, and J. Neuffer, J. Amer. Chem. Soc., 1971, 93, 1489.

- ⁴ J. M. Lalencette and A. Lachance, *Canad. J. Chem.*, 1971, 49, 2996. ⁵ B. Fortunato, E. Gallinella, and P. Mirone, *Gazzetta*, 1971, 101, 543.
- ⁶ R. N. Renaud and J. C. Stephens, J. Labelled Compounds, 1967, 3, 416.
 ⁷ E. Gallinella and P. Mirone, J. Labelled Compounds, 1971, 7, 183.
- ⁸ M. I. Bruce, Org. Mass Spectrometry, 1969, 2, 1037.
 ⁹ R. T. Bailey and A. H. Curran, J. Mol. Struct., 1970, 6, 391.

- ¹⁰ E. R. Lippincott and R. D. Nelson, Spectrochim. Acta, 1958, **10**, 307.
 ¹¹ A. C. Cope and R. W. Siekman, J. Amer. Chem. Soc., 1965, **87**, 3272.
 ¹² H. P. Fritz and L. Schäfer, Chem. Ber., 1964, **97**, 1829; M. E. Switzer and M. F. Rettig, Inorg. Chem., 1974, **13**, 1975.
 ¹³ E.g. I. Willner, M. Halpern, and M. Rabinovitz, J.C.S. Chem. Comm., 1978, 1068.

(Received, 5th May 1978; Com. 482.)