General Method for Determining Enantiomeric Purities of Chiral Lactones

By Ignac J. Jakovac and J. Bryan Jones*
(Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A1)

Summary An easy, convenient, and generally applicable method for determining enantiomeric purities of chiral lactones of all ring sizes is provided by treating small samples of the lactones with methyl-lithium, followed by n.m.r. examination of the resulting diols in the presence of chiral shift reagents such as Optishift I.

We report a convenient and general procedure for establishing the enantiomeric purities of chiral lactones, regardless of their ring size. It involves reaction of lactones (1) with

Samples of $(-)-(6)^{1}\left(65 \%\right.$ e.e. by g.l.c. $\left.{ }^{2}\right)$ and (-)-(7) ${ }^{1}(25$ and 75% e.e., by weight) were measured as 67,28 , and 74% e.e., respectively, by this n.m.r. technique, with an accuracy of $\pm 3 \%$.
The most useful resonances for enantiomeric purity determinations will generally be those of the diastereotopic methyl groups of the $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COH}$ group. However, protons of the other spectroscopically non-equivalent groups present can also be used, as illustrated for (土)-(4), (6), and (7). The technique is a convenient and versatile

Table. Enantiomeric shift differences induced by Optishift I with diols derived from the lactones (3)—(7)a

Lactone	Diols	$\Delta \Delta \delta /$ p.p.m. ${ }^{\text {b }}$	Equiv. of Optishift
(\pm)-(3) ${ }^{\text {c }}$	$\mathrm{PhCH}(\mathrm{OH})\left[\mathrm{CH}_{2}\right]_{2} \mathrm{C}(\mathrm{OH})\left(\mathrm{CHA}_{3}\right)_{2}$	$0 \cdot 160$ ($\mathrm{H}^{\text {A }}$)	0.27
$(\pm)-(4)^{\text {d,e }}$	$\mathrm{HO}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{C}\left(\mathrm{CH}^{8}{ }_{3}\right)\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{C}(\mathrm{OH})\left(\mathrm{CHA}_{3}\right)_{2}$	$0.128\left(\mathrm{H}^{4}\right) ; 0.059\left(\mathrm{H}^{\text {B }}\right.$)	0.25
$(\pm)-(5){ }^{\text {e }}$	$\mathrm{PhCH}_{2} \mathrm{CH}(\mathrm{OH})\left[\mathrm{CH}_{2}\right]_{3} \mathrm{C}(\mathrm{OH})\left(\mathrm{CH}^{\mathrm{A}}\right)_{2}$	$0 \cdot 200\left(\mathrm{H}^{\text {a }}\right.$)	$0 \cdot 32$
$(\pm)-(6)^{\text {e }}$	$\mathrm{HO}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}{ }_{3}\right) \mathrm{CH}_{2} \mathrm{C}(\mathrm{OH})\left(\mathrm{CH}_{3}\right)_{2}$	$0.042\left(\mathrm{H}^{\mathrm{B}}\right)$	$0 \cdot 26$
(\pm)-(7) ${ }^{\text {r }}$	$\left(\mathrm{CH}_{8}\right)_{2} \mathrm{CHCH}(\mathrm{OH})\left[\mathrm{CH}_{2}\right]_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{C}-$ (OH) $\left(\mathrm{CH}_{3}\right)_{2}$	$0.440\left(\mathrm{H}^{\mathrm{A}}\right) ; 0.020\left(\mathrm{H}^{\mathrm{B}}\right)$	$0 \cdot 25$

${ }^{\text {a }}$ Spectra determined at 100 and 220 MHz on CCl_{4} solutions. ${ }^{\mathrm{b}}$ The magnitudes of $\Delta \Delta \delta$ are strongly dependent on [Optishift I]. ${ }^{\text {c }}$ N. H. Cromwell, P. L. Creger, and K. E. Cook, J. Amer. Chem. Soc., 1956, 78, 4412. d J. L. Herrmann and R. H. Schlessinger, J.C.S. Chem. Comm., 1973, 711. e Ref. 1. ' A. Baeyer and V. Villiger, Ber., 1899, 32, 3729.
methyl-lithium followed by n.m.r. examination of the diols (2) produced in the presence of tris[trifluoromethyl-hydroxymethylene-(-)-camphorato]europium(III) (Optishift I). \dagger

(1)
(2)

The 5-, 6-, and 7-membered ring lactones (3)-(7) (5 mg) were treated with excess of MeLi in tetrahydrofuran at $-78{ }^{\circ} \mathrm{C}$. Neutralisation with 10% aqueous acetic acid followed by ether extraction afforded diols \ddagger of sufficient purity for direct n.m.r. examination. The results obtained are recorded in the Table.

At the shift reagent concentrations indicated the peak separations are large enough for accurate integration of all the designated proton resonances, with the relative areas being 1:1 as expected for each racemic diol. The applicability of the method to optically active lactones was confirmed using (6) and (7) of known enantiomeric excess (e.e.).
one, and, in contrast to previous lactone e.e. determination methods, ${ }^{2,3}$ it is not subject to any limitations with respect to ring size.

$(\pm)-(3)$

(\pm) (4)

$(\pm)-(5)$

(士)-(6)

(\pm) $-(7)$

We thank the National Research Council of Canada and Hofmann-La Roche, Inc. for support.
(Received, 28th December 1978; Com. 1306.) \dagger We also examined the n.m.r. spectra of various chiral lactones themselves in the presence of the commonly available chiral shift
reagents (D. H. Williams, Pure Appl. Chem., $1974, \mathbf{4 0}, \mathbf{2 5} ; \mathrm{M}$. D. McCreary, D. W. Lewis, D. L. Wernick, and G. M. Whitesides, J.
Amer. Chem. Soc., 1974, 96, 1038). This was not satisfactory as a routine method for enantiomeric purity determinations.
\ddagger Each new diol was fully characterized spectroscopically and by elemental analysis.
${ }^{1}$ I. J. Jakovac, K. P. Lok, and J. B. Jones, to be published.
${ }^{2}$ G. Saucy, R. Borer, D. P. Trullinger, J. B. Jones, and K. P. Lok, J. Org. Chem., 1977, 42, 3206.
${ }^{3}$ W. H. Pirkle, D. L. Sikkenga, and M. S. Pavlin, J. Org. Chem., 1977, 42, 384; W. H. Pirkle and D. L. Sikkenga, ibid., 1370.

