Phase-transfer Catalysis Using Chiral Catalysts. Synthesis of Optically Active 2-Phthalimido-esters

By SEBASTIÁN JULIÁ,* ANTONIO GINEBREDA, and JOAN GUIXER (Departmento de Química Orgánica, Instituto Químico de Sarriá, Barcelona 17, Spain)

Summary Reaction between (\pm) -2-bromoalkanoates and potassium phthalimide, under solid-liquid phase-transfer conditions, using either (-)-1-benzylcinchonidinium chloride or (+)-1-benzylcinchoninium chloride as chiral phase-transfer catalysts, gives optically active 2-phthalimido-esters.

THE application of phase-transfer catalysis $(PTC)^1$ in asymmetric synthesis is a topic of current interest. Quaternary ammonium salts derived from naturally occurring optically active amines (ephedrine,² chinine³) have been used as catalysts in recent reports. However *N*-alkylation of potassium phthalimide has been carried out by solid-liquid PTC using quaternary phosphonium salts.⁴ Since 2-phthalimido-esters are immediate synthetic precursors of the corresponding amino-acids, it would be of interest to

attempt their asymmetric synthesis by PTC. We report here the synthesis of optically active 2-phthalimido-esters by reaction of (\pm) -2-bromo-esters and potassium phthalimide, by solid-liquid PTC using chiral catalysts, (+)-1benzylcinchoninium chloride (BCNC) and (-)-1-benzylcinchonidinium chloride (BCDC). No examples of Nalkylations under these conditions have been reported.

A typical experiment involves heating to reflux a solution containing 20 mmol of the (\pm) -2-bromo-ester in 60 ml of solvent (liquid phase), 25 mmol of powdered potassium phthalimide (solid phase), and 1 mmol of the catalyst (only partially soluble in liquid phase). The catalyst and its degradation products are carefully removed and 2-phthalimido-esters are isolated in *ca*. 30–40% yield by washing the reaction mixture with dilute acid and water, chromatography over silica gel, and recrystallization from n-hexane.

TABLE						
Exp. No.	Substrate	Catalyst	Solvent	$[\alpha]_{D}^{20}$	Optical purity/% ^{b,c}	
1	(\pm) -MeCH(Br)CO ₂ Et	BCDC	Α	0	0	
2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	В	-0.15	0.63(S)	
3	**	**	С	-1.47	7·7 (Š)	
4	**	**	D	-2.30	12.1(S)	
5	**	**	E	-1.80	9.5(S)	
6	**	BCNC	E	3.62	19.1(R)	
7	(-)-MeCH(Br)CO ₂ Et	BCDC	E	$2 \cdot 20$	11.6(R)	
8	"	BCNC	E	9.94	52.3(R)	
9	(\pm) -EtCH(Br)CO ₂ Me	BCDC	E	-2.06		
10	$(+)$ -EtCH $(Br)CO_{3}Pr^{1}$	**	E	-3.42		
11	(\pm) -PhCH(Br)CO ₂ Me	**	E	-0.10		

^a A, Acetonitrile; B, methyl ethyl ketone; C, ethyl acetate; D, dioxan; E, tetrahydrofuran. ^b Optical purity is defined as $[\alpha]_{obs}/[\alpha]_{max} \times 100$. ^c In order to calculate the optical purity, the compound (S)-(-)-ethyl 2-phthalimidopropionate was prepared from (+)-alanine (E. Fisher, *Ber.*, 1907, 40, 489). The rotatory power obtained $([\alpha]_D^{20} - 19.0)$ is higher than that reported previously $([\alpha]_D^{20} - 12.6)$. No data has been found for the other compounds.

As can be seen in the Table, optical yields are greatly affected by solvent polarity.⁵ Non-polar solvents such as dichloromethane, chloroform, or benzene cannot be used because of the low chemical yields obtained. Using a catalyst with different configuration (BCNC and BCDC differ in configuration at C-8 and C-9) gives the opposite enantiomer in high yield (*cf.* Table, exp. nos. 5 and 6).

In order to obtain information about the reaction mechanism, we have carried out experiments (7 and 8) with

(S)-(-)-ethyl 2-bromopropionate as substrate from which the following conclusions can be drawn: (a) the reaction takes place with partial inversion of configuration and, (b) it seems to be a kinetic racemate resolution induced by the catalyst. These conclusions are supported by the recovery, in some cases, of optically active unchanged substrate (Table, exp. no. 6).

(Received, 16th May 1978; Com. 532.)

¹ E. V. Dehmlov, Angew. Chem. Internat. Edn., 1974, 13, 170; 1977, 16, 493.

² S. Colonna, J. Balcells, and R. Fornasier, Synthesis, 1977, 266; J. P. Masse and E. R. Parayre, J.C.S. Chem. Comm., 1976, 438.

³ J. C. Hummelen and H. Wynberg, Tetrahedron Letters, 1978, 1089.

⁴ D. Landini and F. Rolla, Synthesis, 1976, 389.

⁵ This has also been recently observed by H. Wynberg and B. Greijdanus, J.C.S. Chem. Comm., 1978, 427, in homogeneous asymmetric catalysis.