Steric Mechanism of Formation of the PdCl π -allyl Derivative from [6 β -²H]Cholest-4-ene

By IAN J. HARVIE and FRANCIS J. MCQUILLIN

(Department of Organic Chemistry, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU)

Summary $[6\beta^{-2}H]$ Cholest-4-ene reacts with $[(PhCN)_2-PdCl_2]$ to give the $\alpha 4-6\eta$ and $\beta 4-6\eta$ PdCl derivatives with specifically syn 6-H, or 6-2H elimination, respectively.

To exclude process (b) and to identify the mechanism characteristic of PdCl π -allyl formation from alkenes we have examined the reaction of $[6\beta^{-2}H]$ cholest-4-ene (1) (from action of LiAlH₄-AlCl₃⁵ on $[6\beta^{-2}H]$ cholest-4-en-3-one⁶).

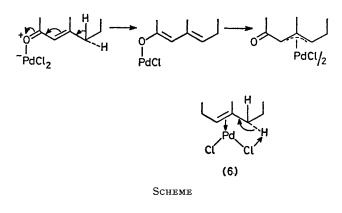
Cholest-4-ene has already been shown' to give α and β 4-6 η PdCl derivatives with [(PhCN)₂PdCl₂], and with Na₂PdCl₄-HOAc-Ac₂O-NaOAc these products are accompanied by the α and β 3-5 η PdCl derivatives.

From (1), ²H 88%, and [(PhCN)₂PdCl₂] in CHCl₃ (reflux) we obtained 40% of the α 4—6 η PdCl derivative (2), ²H 87.8%, δ 3.73 (1H, m) and 1.12 (3H, s), and 15% of the β 3—5 η PdCl complex (3), ²H 88%, δ 5.27 (1H, d), 4.85 (1H, m), and 1.42 (3H, s), together with recovered (1), ²H 88%.

These results indicate specifically syn elimination of 6α -H in the formation of (2), and a marked isotopic discrimination making the β 3—5 η rather than the β 4—6 η PdCl complex the kinetic product of PdCl₂ co-ordination to the β side of the alkene.

A SERIES of steroid-4-en-3-ones was found¹ to yield specifically $\alpha 4-6\eta$ PdCl derivatives. The orientation of the PdCl residue derives both from n.m.r. data,¹ and from the observed² displacement of PdCl by $\overline{CH}(CO_2Me)$ with the expected³ inversion of stereochemistry. However, use of a 6β -²H-steroid-4-en-3-one disclosed an unexpected lack of stereospecificity at the π -PdCl₂ $\rightarrow \pi$ -allyl-PdCl stage as between elimination of 6α - and 6β -H. The unchanged steroid showed no'deuterium loss, and we concluded that the apparent duality of mechanism could result from (a) specifically syn, *i.e.* 6α -H, transfer, to Pd together with (b) a superimposed H loss mediated by the 3-oxo group which is known⁴ preferentially to labilise 6β -H.

The method of PdCl complex formation in a melt¹ { $[6\beta^{-2}H]$ cholest-4-ene, ²H 83·3%, [(PhCN)₂PdCl₂], and dry $CaCO_3$, 4 equiv. at 100 °C, 2 h} gave additional information. The α 4—6 η derivative (2) (40%), ²H 82.5%, was accompanied by the β 4—6 η PdCl complex (4) (< 3.5%), ²H 0%, δ 3.65 (2H, m) and 1.55 (3H, s), the β 3—5 η derivative (3) (26%), ²H 83·1%, and the α 3—5 η PdCl complex (5) (5%), ²H 83%, δ 5·13 (1H, d) 4·83 (1H, m), and 0·90 (3H, s).


These findings support the conclusion that the process: alkene–PdCl₂ $\rightarrow \pi$ -allyl PdCl involves stereospecific loss of hydrogen syn to palladium and also that the 6β , *i.e. trans* H, loss in the steroid-4-en-3-one series1 must be attributed to the influence of the 3-oxo group.

From a comparison of the ratio of α 4–6 η to β 4–6 η PdCl derivatives, from $[6\beta^{-2}H]$ cholest-4-ene, *i.e.* > 11.5, with the ratios reported7 for the undeuteriated steroid under differing experimental conditions, viz. 46/14 = 3.28 or 26/8 = 3.26 it is possible to derive an approximate isotope factor of > 3.5 for the formation of the cholest-4-ene π -allyl derivative. This is rather larger than would be expected for a process of insertion of Pd into the CH bond; $k_{\rm H}/k_{\rm D}$ for

- ¹ K. H. Henderson and F. J. McQuillin, J.C.S. Chem. Comm., 1978, 15. ² D. J. Collins, W. R. Jackson, and R. N. Timms, Tetrahedron Letters, 1976, 495; F. J. McQuillin and M. Wood, J. Chem. Research (S),
- 1977, 61; (M) 0752. ³ B. M. Trost and L. Weber, J. Amer. Chem. Soc., 1975, 97, 1611; B. M. Trost and P. E. Strege, *ibid.*, p. 2534; B. M. Trost and ⁸ B. M. Trost and L. Weber, J. Amer. Chem. Soc., 1975, 97, 1011; B. M. Trost and F. E. Strege, 1014., p. 2004; B. M. Trost and T. R. Verhoeven, *ibid.*, 1976, 98, 630.
 ⁴ G. Subrahmanyan, S. K. Malhotra, and H. J. Ringold, J. Amer. Chem. Soc., 1966, 88, 1332.
 ⁵ Cf. M. P. Paradisi and A. Romero, J.C.S. Perkin I, 1972, 2010; I. M. Cunningham and K. H. Overton, *ibid.*, 1974, 2458.
 ⁶ S. K. Malhotra and H. J. Ringold, J. Amer. Chem. Soc., 1965, 87, 3228.
 ⁷ D. N. Jones and S. D. Knox, J.C.S. Chem. Comm., 1975, 165.
 ⁸ R. J. Hodges, D. E. Webster, and P. B. Wells, J. Chem. Soc (A), 1971, 3230.
 ⁹ Cf. M. A. Bennett and A. Watt, Chem. Comm., 1971, 95; M. A. Bennett, G. B. Robertson, R. Watt, and P. O. Whimp, *ibid.*, p. 752.

the Pt^{II} catalysed exchange reaction⁸ of alkanes was found to be ca. 1.7. A value of > 3.5 is, however, consistent with a mechanism such as that shown at (6), in which H is transferred as H⁺ and an eliminating chloride ligand acts as proton acceptor.

In the earlier work¹ with the $[6\beta^{-2}H]$ steroid-4-en-3-one we found evidence of preferential elimination of 6B-H, i.e. trans to the PdCl₂ residue. This steric preference is characteristic of a process in which the electrons of the 6β bond enter the π system of the enone by polarisation of the oxo group. The recovered steroid-4-en-3-one showed no loss of ²H, *i.e.* enolisation seems to be excluded. However, an equivalent process arising from PdCl₂ co-ordination to the oxo group may be envisaged (Scheme). This process

represents a second route for PdCl π -allyl formation where the alkene bond is placed $\alpha\beta$ or $\beta\gamma$ to an oxo group. The second step requires a 1,3- (or 1,5-) shift, specifically on the α -face of the steroid, but it is possible to envisage an oxaallyl intermediate;9 the PdCl residue will presumably be in bonding interaction with the π -system of the 3,4-alkene bond.

(Received, 5th June 1978; Com. 589.)