Synthesis of some Diplatinum Complexes, including Bis-μ-[bis(diphenylphosphino)methane]-μ-methylene-dichlorodiplatinum, [Pt₂Cl₂(μ-CH₂)-(μ-Ph₂PCH₂PPh₂)₂], from [Pt₂Cl₂(μ-Ph₂PCH₂PPh₂)]

By MICHAEL P. BROWN,* JOHN R. FISHER, SUSAN J. FRANKLIN, and RICHARD J. PUDDEPHATT (Donnan Laboratories, University of Liverpool, P.O. Box 147, Liverpool L69 3BX)

and KENNETH R. SEDDON

(Department of Inorganic Chemistry, South Parks Road, The University, Oxford OX1 3QR)

Summary A number of diplatinum complexes including $[Pt_2Cl_2(\mu-CH_2)(\mu-dppm)_2]$ [dppm = bis(diphenylphosphino) methane], the first diplatinum complex containing a bridging CH₂ group, and complexes $[Pt_2Cl_2(\mu-X)-$

 $(\mu$ -dppm)₂] (X = S and SO₂) and [Pt₂L₂(μ -dppm)₂][PF₆]₂ (L = a monodentate ligand) have been prepared from [Pt₂Cl₂(μ -dppm)₂].

THE complex $[Pt_2Cl_2(\mu-dppm)_2]^{1,2}$ [dppm = bis(diphenylphosphino)methane] (1) is a potentially useful substrate for the study of reactions^{2,3} at a platinum-platinum bond. Favourable factors would appear to be its approximately planar structure² allowing ease of attack at platinum, the low formal oxidation state of the two platinum atoms, and the stability conferred on the binuclear unit by the two μ -dppm groups. A number of reactions of (1) are reported (Scheme).

The CH₂-bridged complex (2) $[\nu(Pt-Cl) 255 \text{ cm}^{-1}]$, a lemon-yellow air-stable solid, is readily crystallized (60%) following addition, at 0-20 °C, of an ether solution of CH₂N₂ to (1) in CH₂Cl₂. A colourless gas, presumably N₂, is evolved. The presence of a Pt-CH₂-Pt group is shown by a resonance ($\delta 1.08$ in C₂D₂Cl₄ at 80 °C) consisting of 13 observable regularly spaced peaks in the ¹H n.m.r. spectrum with relative intensities in good agreement with the calculated values 1:2:6:8:8:13:17:13:8:8:6:2:1. These values (given to the nearest integer) are calculated on the basis of the expected splitting of the CH₂ resonance into a 1:4:6:4:1 quintet by four equivalent phosphorus atoms, further splitting into a 1:8:17:8:1 pattern¹ by coupling to ¹⁹⁵Pt [${}^{2}J(Pt-H)$ 54, ${}^{3}J(P-H)$ 9 Hz], and by taking into account the superposition of some peaks. Four outer peaks are too weak to be observed and their relative intensities are not included in the above values. The overall good agreement between the observed and expected spectra provides strong evidence for the presence of the symmetrical Pt-CH₂-Pt bridge.

The formation of complex (2) represents the first reported addition of CH₂ to a Pt-Pt bond in a platinum complex. Only a few other broadly similar reactions of CH₂N₂ are known in transition metal chemistry.⁵ Complexes containing M₂(μ -CH₂) bridging units are uncommon⁶ and (2) is the first such platinum complex although related complexes [Pt₂{ μ -C(CF₃)₂}(cod)₂] and [Pt₂{ μ -CH(CF₃)}(cod)₂]⁷ (cod = cyclo-octadiene) are known.

Treatment of (1) in CH₂Cl₂ with a suspension of sulphur (at 20 °C) followed by filtration gives the sulphur-bridged complex (3) (80%) [ν (Pt-Cl) 286 cm⁻¹] and with an excess of SO₂ (at 20 °C) (1) gives the SO₂-bridged complex (4) (95%) [ν (Pt-Cl) 274; ν (SO₂)⁴ 1148 and 1024; δ (SO₂) 555 cm⁻¹].† The CH₂ groups of the dppm ligands of (2)—(4), in contrast to those of (1), have two ¹H resonances [δ (CH₂): (2), 3.80 and 2.90 in C₂D₂Cl₄; (3), 4.89 and 2.77 in C₂D₂Cl₄; (4), 4.24 and 2.84 in CD₂Cl₂-C₂D₂Cl₄] with, in some cases, evidence of H–H, P–H, and Pt–H couplings. The non-equivalence of the two H atoms of the CH₂ groups is expected in the presence of an additional bridging group (see A).

A rather similar, but cationic, (SMe)-bridged hydride (5) $[v(Pt-H) 2152 \text{ cm}^{-1}]$ is readily prepared (95% yield) from reaction of MeSH with the hydride comples³ $[Pt_2H_2(\mu-H)-(\mu-dppm)_2]^+[PF_6^{-1}]$. Unlike the complexes above, (5) has two ³¹P resonances $[\delta(P), 9.88 \text{ and } 9.23 \text{ p.p.m.}]$ at 40 °C in CD_2Cl_2 indicating that the Me group lies to one side of the $Pt_2(\mu-S)$ plane, lowering the symmetry and causing the two μ -dppm groups to become non-equivalent. Inversion at sulphur is however sufficiently rapid at 80 °C in $C_2D_2Cl_4$ for only one ³¹P resonance $[\delta(P), 10.46 \text{ p.p.m.}]$ to be observed (see A; X = SMe). The bridging nature of the SMe group is established by the presence of all five peaks of the 1:8:17:8:1 'diplatinum' pattern^{1,3} in the ¹H resonance of the Me group $[\delta 2.38, {}^{3}J(Pt-H) 24.6 \text{ Hz}]$ and the Pt-H resonance is also observed $[\delta - 10.8, {}^{1}J(Pt-H) 1152 \text{ Hz}].$

In contrast to the above reactions of (1), in which an additional bridging group is introduced, reactions (in CH₂Cl₂) with phosphines, ammonia, and pyridine yield stable dicationic platinum(I) complexes (6)—(8) by displacement of chloride ion. The CO complex (9) is best prepared indirectly *via* reaction of (7) (in CH₂Cl₂) with CO.

 \dagger Added in proof: The palladium analogue of this μ -SO₂ complex has now been reported (L. S. Benner, M. M. Olmstead, H. Hope, and A. L. Balch, J. Organometallic Chem., 1978, 153, C31).

The CH_2 groups in complexes (6)---(9) have ¹H resonances similar to that of (1) and complexes (7)—(9) have ³¹P n.m.r. spectra of the expected type, showing that all four phosphorus atoms are equivalent. Analysis of the ³¹P n.m.r. spectra of complexes (6) reveals the presence of two resonances in the expected 1:2 ratio and additional coupling between the phosphorus atoms of the terminal and bridging groups.

We thank the Central Electricity Generating Board for the award of a Research Fellowship (to K.R.S.).

(Received, 5th June 1978; Com. 592.)

¹ M. P. Brown, R. J. Puddephatt, and M. Rashidi, Inorg. Chim. Acta, 1976, 19, L33; M. P. Brown, R. J. Puddephatt, M. Rashidi, and K. R. Seddon, J.C.S. Datton, 1977, 951.

² M. P. Brown, R. J. Puddephatt, M. Rashidi, Lj. Manojlović-Muir, K. W. Muir, T. Solomun, and K. R. Seddon, Inorg. Chim. Acta, 1977, 23, L33. ³ M. P. Brown, R. J. Puddephatt, M. Rashidi. and K. R. Seddon, Inorg. Chim. Acta, 1977, 23, L27; J.C.S. Dalton, 1978, 516; ibid.,

⁸ M. P. Brown, R. J. Fuddeplace, S. Lander, M. P. Brown, R. J. Fuddeplace, S. Lander, M. P. Brown, R. J. Fuddeplace, S. Lander, M. P. Mingos, Transition Metal Chem., 1978, 3, 1.
⁶ D. M. P. Mingos, Transition Metal Chem., 1978, 3, 1.
⁶ W. A. Herrmann, C. Krüger, R. Goddard, and I. Bernal, Angew. Chem., 1977, 89, 342; W. A. Herrmann, B. Reiter, and H. Biersack, J. Organometallic Chem., 1975, 97, 245; R. B. Calvert and J. R. Shapley, J. Amer. Chem. Soc., 1977, 99, 5225.
⁶ R. A. Anderson, R. A. Jones, G. Wilkinson, M. B. Hursthouse, and K. M. Abdul Malik, J.C.S. Chem. Comm., 1977, 865.
⁷ M. Green, A. Laguna, J. L. Spencer, and F. G. A. Stone, J.C.S. Dalton, 1977, 1010.