Reduction of Tris(triphenylphosphine)dichlororuthenium(II) in Acetonitrile: Reformulation of the Nature of the Product; Detection of the First Paramagnetic d⁸ Complex[†]

By David J. Cole-Hamilton and Geoffrey Wilkinson*
(Chemistry Department, Imperial College of Science and Technology, London SW7 2AY)

Summary The complex alleg d to have the stoicheiometry $\operatorname{Ru}(\operatorname{MeCN})_2(\operatorname{PPh}_3)_4$ and to contain a π -bonded acetonitrile, produced by electrochemical reduction of $\operatorname{RuCl}_2(\operatorname{PPh}_3)_n$ (n=3 or 4) in presence of acetonitrile, has been shown to be the hydrido ortho-metallated phosphine species $\operatorname{RuH}(\operatorname{MeCN})(\operatorname{C}_6\operatorname{H}_4\operatorname{PPh}_2)(\operatorname{PPh}_3)_2$; in the reduction of $\operatorname{RuCl}_2(\operatorname{PPh}_3)_3$ in tetrahydrofuran-MeCN a red transient intermediate, believed on the basis of e.s.r. studies to be a d^8 ruthenium(0) species, is formed.

SINCE several putative complexes of ruthenium(0) were shown to be otherwise, 1,2 another prime candidate for reformulation is $Ru(MeCN)_2(PPh_3)_4$. This complex, alleged to contain a π -bonded acetonitrile on the basis of i.r.

spectra was obtained by electrochemical reduction of RuCl₂(PPh₃)₄ in MeCN.

The reduction of $\operatorname{RuCl}_2(\operatorname{PPh}_3)_n$ (n=3 or 4) by sodium or magnesium amalgam in tetrahydrofuran (THF) containing ca. 10% MeCN gives a yellow complex evidently identical with that reported.³ Thus all similar are the melting point, quoted i.r. frequencies, solubilities, and the reaction⁴ with propene to give $\operatorname{RuH}(C_3H_5)(\operatorname{MeCN})(\operatorname{PPh}_3)_2$.

However, additional peaks in the i.r. spectrum at 1550 and 1410 cm⁻¹ suggest¹ an *ortho*-metallated phenyl ring. The quoted³ absorption at 1910 cm⁻¹ is clearly due to the presence of a Ru-H bond, not π -MeCN, and this is proved by ¹H n.m.r. study in THF-MeCN in which the compound is soluble and stable; there is a doublet of doublets of doublets at δ -11·8. The ³¹P n.m.r. spectrum (three doublets of doublets) confirms that the three phosphorus atoms non-

equivalent and meridional as in (A) (Scheme). The compound is thus RuH(MeCN)(C₆H₄PPh₂)(PPh₃)₂ and all the reactions reported for 'Ru(MeCN)₂(PPh₃)₄' may easily be accommodated on this basis.

Most interesting however, is that in the reduction of RuCl₂(PPh₃)₃ in THF-MeCN a transient red intermediate is formed. This has a half-life of ca. 1 min at 25 °C but is reasonably stable at low temperatures. Electron paramagnetic resonance study of solutions frozen when red, and after re-warming and re-reduction allows the identification of a spectrum that can be unequivocally assigned to the red species. The two, equally intense peaks can be assigned as the two central peaks of an axially symmetrical S = 1 spin system; the outer lines are weak and very broad suggesting marked anisotropy.

The red species is evidently a ruthenium(0), four-coordinate complex. Preliminary attempts to isolate this highly unstable species, which very readily converts into (A), suggest that it is $Ru(MeCN)(PPh_3)_3$ (B). This appears to be the first paramagnetic d⁸ complex of an element in the second or third row transitional series. It may be noted that, although having a distorted tetrahedral structure, Ru(styrene)₂(PPh₃)₂ is diamagnetic.²

The mechanism of reduction of $RuCl_2(PPh_3)_n$ (n = 3 or 4)in the presence of MeCN is shown in the Scheme; the complex RuCl₂(MeCN)₂(PPh₃)₂ is known.⁵

We thank Dr. J. F. Gibson for assistance with electron paramagnetic resonance measurements.

(Received, 24th July 1978; Com. 790.)

¹ D. J. Cole-Hamilton and G. Wilkinson, Nouveau J. Chim., 1977, 1, 141.

¹ D. J. Cole-Hamilton and G. Wilkinson, Nouveau J. Chim., 1977, 1, 141.

² M. A. A. F. de C. T. Carrondo, B. N. Chaudret, D. J. Cole-Hamilton, A. C. Skapski, and G. Wilkinson, J.C.S. Chem. Comm., 1978, 463; B. N. Chaudret, D. J. Cole-Hamilton, and G. Wilkinson, J.C.S. Dalton, in the press; Acta Chem. Scand., in the press.

³ E. O. Sherman and P. R. Schreiner, J.C.S. Chem. Comm., 1976, 3.

⁴ E. O. Sherman and P. R. Schreiner, J.C.S. Chem. Comm., 1978, 223.

⁵ J. D. Gilbert and G. Wilkinson, J. Chem. Soc. (A), 1969, 1749.

SCHEME