Continuous Hydrogenation of Ethene using Spilt-over Hydrogen

By MARIANA S. W. LAU and PAUL A. SERMON*

(School of Chemistry, Brunel University, Uxbridge, Middlesex, UB8 3PH)

Summary The ability of fluidised powders of SiO₂-Al₂O₃, γ -Al₂O₃, and MoO₃ to catalyse the hydrogenation of C₂H₄ continuously at 400-550 K is greatly increased when they receive H atoms spilling over from Pt/ γ -Al₂O₃ pellets.

HYDROGEN¹ and other adsorbed species² may spill over from metal particles and adsorb, absorb, or react with the supporting or adjacent oxide. Hydrogen spilt over from Pt/γ -Al₂O₃ to additional γ -Al₂O₃ may hydrogenate alkenes, and other unsaturated hydrocarbons, adsorbed thereon.^{1,3} However, spilt-over hydrogen reacts more slowly than metal-held hydrogen⁴ and, after separation of metallic and oxide phases, it cannot sustain continuous hydrogenation reactions.³ We now report that the apparently conflicting requirements for continuous hydrogenation by spilt-over hydrogen (*i.e.* separation of highly reactive sites and high rates of spillover) have been fulfilled.

A sample (0.4 g) of Al_2O_3 pellets (3 mm diameter), impregnated with H_2PtCl_6 to give 1.7% Pt after reduction in H_2 , was placed in the reactor shown in the Figure and was covered with γ -Al₂O₃ (3 g), SiO₃ (3 g), SiO₂-Al₂O₃ (3 g), or MoO₃ (8 g). After flushing with N₂, each sample was treated at 473 or 573 K with H₂ (101 kPa, 0.40 dm³ min⁻¹) for 1 h, which entered at the base of the reactor, fluidising the oxide powders, but leaving the pellets stationary on the sinter. Then, with the sample at 473 K, C₂H₄ in N₂ (101 kPa, 60 cm³ min⁻¹, N₂: C₂H₄ = 1000: 1) was also introduced 3 cm above the pellets. C₂H₄ (final concentration 130 p.p.m.) was therefore only in contact with the oxide powders. The extent of C₂H₄ hydrogenation was monitored by g.l.c. and some results are given in the Table.

The original oxides were inactive in C_2H_4 hydrogenation at 473 and 573 K. Since SiO₂ (of similar surface area, porosity, and particle size to the other oxides) fluidised upon the 1.7% Pt/Al₂O₃ pellets was also inactive, we infer that direct C_2H_4 hydrogenation upon the pellets is insignificant under these conditions. However, γ -Al₂O₃, SiO₂-Al₂O₃, and MoO₃ were active when fluidised upon

FIGURE. Catalytic reactor where H_2 enters at 1 and C_2H_4 in N_2 enters at 2. 3 denotes pellets of 1.7% Pt/Al₂O₃ at the base of the reactor and in contact with fluidised powders of SiO₂, γ -Al₂O₃, SiO₂-Al₂O₃, or MoO₃ at 4. Products left the reactor at 5.

these pellets. These oxides darkened and gained slightly in weight upon fluidisation on the Pt/Al_2O_3 pellets and subsequently exhibited moderate hydrogenation activity in their own right, after the removal of the pellets, proportional to the extent of carbonaceous deposit. The oxides then lost weight and returned to their original colour on heating in air or O_2 to 773 K with removal of carbonaceous residues. No Pt was detected in any of the powders after contact with Pt/Al_2O_3 pellets using

		Molecules C_2H_4 hydrogenated $\times 10^{13}$ g ⁻¹ s ⁻¹ at 473 K ³	
Sample ^b	Reduction temp./K	Oxide activated by 1.7% Pt/Al ₂ O ₃ pellets	Oxide after removal of 1.7% Pt/Al ₂ O ₃ pellets and reduction in H ₂
SiO,	573	0	0
SiO ₂ -Al ₂ O ₃ (13%)	573	80	25
$SiO_{2} - Al_{2}O_{3} (25\%)$	573	275	127
MoŌa	473	153	45
$-Al_2O_3$ calcined			
at 843 K	473	51	

TABLE. Hydrogenation activities of various oxides

^a No molecules of C_2H_4 were hydrogenated with oxide alone. ^b Porosities (SiO₂: 1·3 cm³ g⁻¹; SiO₂-13% Al₂O₃: 1·5 cm³ g⁻¹; SiO₂-25% Al₂O₃: 1·4 cm³ g⁻¹; γ -Al₂O₃: 0·8 cm³ g⁻¹) and surface areas (SiO₂: 270 m² g⁻¹; SiO₂-13% Al₂O₃: 450 m² g⁻¹; SiO₂-25% Al₂O₃: 550 m² g⁻¹).

atomic absorption, and its concentration must have been <10 p.p.m. The SiO₂ results confirm the insignificance of Pt transfer. The insignificance of C_2H_4 hydrogenation on Pt/Al_2O_3 pellets was confirmed when a probe in the operating reactor adjacent to the pellets, and sampling the gas phase at 2 cm³ min⁻¹, detected only 0.4 p.p.m. of both C_2H_4 and C_2H_6 . This could have contributed only 1.5% of the observed hydrogenation (*i.e.*, 98.5%of the observed hydrogenation on SiO₂-Al₂O₃ fluidised upon Pt/Al₂O₃ occurred upon the fluidised oxide powder).

It appears that hydrogen spills over on to the oxide powders from the Pt/Al₂O₃ pellets where it participates in C_2H_4 hydrogenation and induces the formation of sites active in their own right thereafter, which are subject to further study. After replacement of H_2 by N_2 (0.35 dm³ min⁻¹) the quantity of C_2H_4 hydrogenated fell to zero rapidly indicating that the concentration of active sites onto which H_2 spilt over was $< 2 \times 10^{20}$ g⁻¹ for all oxide samples.

J.C.S. CHEM. COMM., 1978

The activity of SiO₂-Al₂O₃ upon Pt/Al₂O₃ pellets was (i) almost constant with an increase in reactant flow rate, indicating the benefits of increased fluidisation, (ii) was a maximum at a reaction temperature of 473 K, (iii) increased slightly in the presence of O₂ (25 p.p.m.), (iv) decreased by a factor of 3.4 at 473 K when the amount of Al_2O_3 in $SiO_2-Al_2O_3$ decreased from 25 to 13%, (v) was not affected when the concentration of Pt on the Al₂O₃ pellets decreased from 1.7 to 0.5%, (vi) increased linearly as the weight of Pt/Al₂O₃ pellets increased, and (vii) increased slowly with repeated reductions.

The novel manner in which hydrogen spilled over from Pt/Al₂O₃ pellets to various oxide powders inducing continuous hydrogenations thereon may find more widespread

(Received, 11th May 1978; Com. 505.)

¹ P. A. Sermon and G. C. Bond, Catal. Rev., 1973, 8, 211.

²G. A. L'Homme, M. Boudart, and L. D'or, Bull. Acad. Roy. Belg. Cl. Sci., 1966, 52, 1206, 1249; G. Croft and M. J. Fuller, Nature, 1977, 269, 585.

A. R. Mazabrard, G. M. Pajonk, G. E. E. Gardes, and C. Hoang-Van, J. Colloid Interface Sci., 1977, 58, 88. ⁴S. J. Teichner, Proc. 6th Internat. Cong. Catal., 1977, vol. 1, p. 362.