
Phenyl trans-2-Chlorovinyl Sulphone, a Vinyl Cation Equivalent

By BRIAN W. METCALF* and EDITH BONILAVRI

(Centre de Recherche Merell International, 16, rue d'Ankara, 67084 Strasbourg Cedex, France)

Summary Phenyl trans-2-chlorovinyl sulphone is a vinyl cation equivalent useful for the conversion of α -amino acids into α -vinyl α -amino acids.

It is known that phenyl *trans*-2-chlorovinyl sulphone (3) readily undergoes substitution with a variety of heteroatomic nucleophiles,¹ and that vinyl sulphones can be reduced to the corresponding olefins.² A sequential combination of these reactions, using a carbanionic nucleophile would appear, therefore, to offer a means for the electrophilic introduction of a vinyl unit at carbon. Our interest in α -vinyl α -amino acids as potential irreversible enzyme inhibitors³ has led us to investigate, in a model sequence, the transformation of alanine to N-benzoyl- α -vinyl-alanine

methyl ester, using phenyl trans-2-chlorovinyl sulphone (3) as a vinyl cation synthon.4

Thus the ester enolate derived from the ester $(1)^{5,6}$ adds, with concomitant elimination of chloride, to (3) at -78 °C to afford the phenyl trans-vinyl sulphone (4). Without purification compound (4) was treated with dilute hydrochloric acid, the resulting amine hydrochloride (5)[†] (m.p. 120 °C) being isolated in 83% overall yield. Compound (5) was converted into the benzamide (6) \dagger (m.p. 143 °C) by routine methods, and (6) was readily desulphurized using aluminium amalgam,² to afford N-benzoyl- α -vinyl-alanine methyl ester (7)[†] (m.p. 109 °C) in 80% yield. Alternatively N-benzoylalanine methyl ester (2) can be directly converted, in 57% yield, into (6), via the reaction of its derived dianion7 with (3).

Another α -viny l α -amino acid in which the α carbon is also fully subsituted, α -vinyl-3,4-dihydroxyphenylalanine, has been made previously via reduction of acetylenic intermediates, 3,8 while Baldwin⁹ has reported the synthesis of some $\beta\gamma$ -unsaturated glycine analogues *via* reduction of the corresponding nitro derivatives. The use of a vinyl cation synthon offers a complementary strategy, as the α -vinyl α amino acids may be prepared from the corresponding α amino acids.

(Received, 3rd July 1978; Com. 698.)

† N.m.r. and i.r. spectra and elemental analyses are consistent with the proposed structure.

- ¹ F. Montanari, Gazzetta, 1956, 86, 415.
- Y. Pascali and A. Umani-Ronchi, J.C.S. Chem. Comm., 1973, 351.
 B. W. Metcalf and K. Jund, Tetrahedron Letters, 1977, 3689.

⁴ Two other vinyl cation synthons have been reported: T. Oishi, H. Takechi, and Y. Ban, *Tetrahedron Letters*, 1974, 3757; G. A. Koppel and M. D. Kinnick, *J.C.S. Chem. Comm.*, 1975, 473.

- ⁵G. Stork, A. Y. W. Leong, and A. Touzin, J. Org. Chem., 1976, 41, 3491.
 ⁶P. Bey and J. P. Vevert, Tetrahedron Letters, 1977, 1455.
 ⁷A. P. Krapcho and E. A. Dundulis, Tetrahedron Letters, 1976, 2205.

- ⁸ D. Taub and A. A. Patchett, *Tetrahedron Letters*, 1977, 2745.
 ⁹ J. E. Baldwin, S. B. Haber, C. Hoskins, and L. I. Kruse, *J. Org. Chem.*, 1977, 42, 1239.