A New Approach to Cationic Transition Metal Alkyls: $[M(\eta - C_5H_5)_2 - (CH_2SiMe_3)_2]^+[Y]^- (M = Nb or Ta, Y = BF_4 or SbF_6) and their Conversion into the Alkylidene Complexes <math>[M(\eta - C_5H_5)_2(CHSiMe_3)(CH_2SiMe_3)]^{\dagger}$

By Michael F. Lappert and Charles R. C. Milne

(School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary The alkylmetal(IV) complex $[M(\eta-C_5H_5)_2R_2]$ (M = Nb or Ta, R = CH₂SiMe₃), obtained from $[M(\eta-C_5H_5)_2Cl_2]$ and LiR, is oxidised by AgY (Y = BF₄ or SbF₆) in MeCN at 25 °C to yield the thermally stable, crystalline, CH₂Cl₂-soluble cationic alkylmetal(v) complex $[M(\eta-C_5H_5)_2R_2]^+[Y]^-$, which may be deprotonated by reaction with Li[N(SiMe₃)₂] in tetrahydrofuran (thf) to give the thermally stable, pentane-soluble, crystalline ylide $[M(\eta-C_5H_5)_2(CHSiMe_3)(CH_2SiMe_3)]$.

CATIONIC early transition metal alkyls are unusual,^{1,2} probably because of the lack of a general synthetic route and, in many cases, the possibility¹ of a low activation energy decomposition pathway *via* loss of carbonium ion and/or a a bimolecular process involving nucleophilic attack either at the metal centre or resulting in proton abstraction.

We now report the synthesis of the cationic group 5 metal-(v) alkyls, $[M(\eta-C_5H_5)_2(CH_2SiMe_3)_2]^+[Y]^-$ (M = Nb or Ta, Y = BF₄ or SbF₆), (2), from a neutral metal(IV) alkyl precursor, (1), using a silver salt as a one-electron oxidant [Scheme, reaction (ii)]. We further find that these salts are readily deprotonated [Scheme, reaction (iii)] (see also ref. 3) to yield the metal(V) ylide (3). Compounds (3) belong to a rare species, the transition metal ylide, discovered by Schrock, of which the following are in the literature:³ [Ta(CHCMe₃)(CH₂CMe₃)₃], [Ta(η -C₅H₅)₂(CHPh)(CH₂Ph)], [Ta(η -C₅H₅)₂(CX₂)(CX₃)] (X = H or D), and [Ta(η -C₅H₄R)

† No reprints available.

SCHEME. Synthesis of metal(IV) dialkyls (1), dialkylmetal(V) salts (2), and metal(V) ylides (3) (M = Nb or Ta, Y = BF₄ or SbF₆, R = CH₂SiMe₃): (i) LiR, OEt₂, 0 °C; (ii) AgY, MeCN, 20 °C; (iii) Li[N(SiMe₃)₂], thf, 20 °C.

 $(\eta$ -C₅H₄Me)(CH₂)(CH₃)] (R = H or Me).[‡] Data on compounds (1)-(3) are in the Table.

The chemical shift of the α -hydrogen of the carbene carbon is at very low field (Nb < Ta) in the ¹H n.m.r. spectrum as expected for a secondary carbene hydrogen.^{3,4} The cyclopentadienyl and the methylene proton resonances of the CH₂SiMe₃ group of the tantalum ylide (**3**, M = Ta) show inequivalences at room temperature due to restricted

[‡] See also R. R. Schrock and J. D. Sellmann, J. Amer. Chem. Soc., 1978, 100, 3359; L. W. Messerle and R. K. Schrock, *ibid.*, p. 3793, which appeared since submission of this paper.

TABLE. New organo-niobium or -tantalum complexes.ª

Compound	Appearance	M.p. (° C)	¹ H n.m.r. (τ) or e.s.r. parameters
(1), $M = Nb^{b}$ (1) $M = T_{2}$	Red-brown Red	128—130 (decomp.)	$g = 2.037, a (^{93}Nb) = 97 G^{\circ}$
(2), $M = Nb$, $Y = B$	F_4 Pale yellow	126 (decomp.)	g = 2.021, a (-1a) = 98 GeV 3.44 (Cp), 8.01 (CH ₂), 9.81 (SiMe ₃) ^d
(2), $M = 1a$, $Y = BI(3), M = Nb$	Pale yellow	71 (decomp.)	3.48 (Cp), 8.82 (CH ₂), 9.87 (SiMe ₃) ^a -2.57 (CH), 4.63 (Cp), 9.60 (SiMe ₃), 9.70 (SiMe ₃) 10.26 (CH ₂) ^e
(3), $M = Ta$	Cream	90-92 (decomp.)	-0.21 (CH), 4.63 (Cp), 9.43 (SiMe ₃), 9.57 (SiMe ₃), 10.06 (CH ₂) ^e

^a The analogous Mo^v complex $[Mo(\eta-C_5H_5)_2Me_2]^+[SbF_6]^-$, g = 2.021, $a(^{1}H) = 5.7$ G, $a(^{95/97}Mo) = 29.0$ G, was obtained from (1, M = Mo, R = Me) and Ag[SbF_6] (Dr. M. L. H. Green has obtained this by an alternative procedure). ^b See M. R. Collier, M. F. Lappert, and M. M. Truelock, J. Organometallic Chem., 1970, 25, C36. ° In PhMe. d In CD₂Cl₂; Cp = cyclopentadienyl. e In C₆D₆.

rotation about the Ta=C bond (cf. ref. 5). Similar behaviour is observed for the niobium analogue, but interestingly only at lower temperatures. The chemical shift of the methylene hydrogen in complexes (2) are also at low field (Nb < Ta).

Well characterised cationic transition metal alkyls include the homoleptic $[MR_2]^+$ (M = Cu, Ag, or Au, and R is derived from a P or As ylide, e.g., Me₃PCH₂),⁶ [Cr(CH₂- $SiMe_{3}_{2}(bipy)_{2}^{+,7}$ and the $d^{2} [M(\eta - C_{5}H_{5})_{2}(L)R]^{+} (M = Mo \text{ or }$ W, with, e.g., $L = C_2H_4$ or PPh₃ and R = Me),⁸ and most recently,³ the d^{0} [Ta(η -C₅H₄R)(η -C₅H₄R')(Me)X]+

(X = Me, and R = R' = H or Me, or R = H and R' = Me;or X = Br and R = R' = H). These compounds have a rich chemistry. Especially relevant, in the present context, is Schrock and Sharp's deprotonation of their Ta^v salts to yield Ta^{v} ylides,³ the former being obtained by CH_{3}^{-} abstraction from a neutral Tav-CH₃ precursor using $[Ph_{3}C]+[BF_{4}]^{-}$

We thank S.R.C. for support.

(Received, 10th July 1978; Com. 729.)

- P. J. Davidson, M. F. Lappert, and R. Pearce, Chem. Rev., 1976, 76, 219.
 R. R. Schrock and G. W. Parshall, Chem. Rev., 1976, 76, 243.
 R. R. Schrock and P. R. Sharp, J. Amer. Chem. Soc., 1978, 100, 2389, and refs. therein.
 B. Cetinkaya, M. F. Lappert, G. M. McLaughlin, and K. Turner, J.C.S. Dalton, 1974, 1591.
 L. U. Curgersharmen and P. B. Schrock Lature. Chem. Cond. 27, 072 (2000)

- ^a L. H. Guggenberger and R. R. Schrock, J. Amer. Chem. Soc., 1975, 97, 6578.
 ^e H. Schmidbaur, Accounts Chem. Res., 1975, 8, 62.
 ⁷ J. J. Daly, F. Sanz, R. P. A. Sneeden, and H. H. Zeiss, J.C.S. Dalton, 1973, 1497.
 ⁸ F. W. S. Benfield, N. J. Cooper, and M. L. H. Green, J. Organometallic Chem., 1974, 76, 49.