Opening of the P–N Bond of Bicyclic Phosphoranes. Synthesis and X-Ray Crystal and Molecular Structure of Rhodium Complexes of Perhydro-1,3,6,2-dioxazaphosphocine

By DANIEL BONDOUX and IGOR TKATCHENKO*

(Institut de Recherches sur la Catalyse, 79, Bd. du 11 novembre 1918, 69626 Villeurbanne Cédex, France)

DOUREID HOUALLA and ROBERT WOLF

(Equipe de Recherche du C.N.R.S. no. 82, 118, route de Narbonne, 31077 Toulouse Cédex, France)

CHRISTIAN PRADAT and JEAN RIESS

(Laboratoire de Chimie Minérale Moléculaire, Université de Nice, Parc Valrose, 09034 Nice Cédex, France)

and BERNARD F. MENTZEN

(Laboratoire de Cinétique et Génie Chimique, I.N.S.A., 10, avenue Albert Einstein, 69621 Villeurbanne Cédex, France)

Summary μ -Chloro binuclear rhodium(I) complexes trap the bidentate P^{III}-N^{III} tautomers of bicyclic phosphoranes containing a P-H bond to give monomeric rhodium(I) complexes, two of which [(**5a**) and (**5b**)] have been characterised by X-ray crystallography.

THE bicyclic phosphoranes $(1)^1$ formally arise from oxidative addition of the N-H or O-H groups of the intermediates (2), (3), or (4) to the P^{III} atom [reaction (1)]. However, neither (2) nor the equilibrium between (1) and (2), (3), or (4) have been observed spectroscopically. The presence of two donor atoms in the potentially bidentate ligand (2) prompted us to study the co-ordination chemistry of this class of compounds.

A solution of bis(dicarbonylchlororhodium) in toluene reacts at room temperature with the phosphoranes (1a) and (1b) with evolution of carbon monoxide, to form the yellow crystalline complexes (5a) [95% yield; m.p. 220 °C (decomp.); v_{X-H} 3195, v_{co} 1991, and v_{Rh-cl} 285 cm⁻¹ (Nujol); ³¹P n.m.r.† δ + 162 p.p.m., J(P-Rh) 190·5 Hz] and (5b) [98% yield; m.p. 220 °C (decomp.); v_{X-H} 3178, v_{co} 1985, and v_{Rh-cl} 290 cm⁻¹; ³¹P n.m.r.: δ + 160·8 p.p.m., J(P-Rh) 196·7 Hz], respectively.

Elemental analysis and mass spectrometry confirm the formation of phosphorane-Rh(CO)Cl adducts. There is no ν_{P-H} band. The position of ν_{X-H} suggests a co-ordinated

† All ³¹P n.m.r. spectra were recorded for solutions in Me₂SO with H₃PO₄ as external reference.

N-H unit rather than co-ordination of an O-H unit.² There is no v_{co} splitting and only one v_{Rh-Cl} absorption in (5a) and (5b). The relatively high value of v_{co} is in agreement with the expected *cis*-co-ordination of the CO and Cl ligands. Furthermore, the positions of v_{co} and v_{Rh-Cl} in these complexes are similar to those observed for *cis*-[RhCl(CO)L(2,6-lutitidine)] (L = PMe₃, v_{co} 1979, v_{Rh-Cl} 300; L = PMe₂Ph, v_{co} 1962, v_{Rh-Cl} 295 cm⁻¹).³ These results suggest structure (5), in accordance with the antisymbiotic rule.⁴ However, *o*-(diphenylphosphino)-*NN*-dimethylaniline was reported to lead to the other isomeric possibility.⁵ We have carried out single-crystal X-ray diffraction studies on (5a) and (5b).

Crystal data: (**5a**), C₁₁H₁₄ClNO₃PRh, $M = 377 \cdot 57$, orthorhombic, $a = 7 \cdot 031(1)$, $b = 11 \cdot 509(2)$, $c = 33 \cdot 400(9)$ [Å, Z=8, space group Pbca; $D_{\rm c} = 1 \cdot 855$, $D_{\rm m} = 1 \cdot 87$ g cm⁻³; $R = 0 \cdot 0298$, $R_{\rm w} = 0 \cdot 0308$; 1860 unique data $[I > 2\sigma(I); 2\theta < 60^{\circ}]$; $\mu = 15 \cdot 58$ cm⁻¹, $\mu R = 0 \cdot 23$ (absorption corrections neglected); (**5b**), C₁₃H₁₈ClNO₃PRh, $M = 405 \cdot 63$, monoclinic, $a = 11 \cdot 692(2)$, $b = 15 \cdot 447(4)$, $c = 9 \cdot 202(2)$ Å, $\beta = 110 \cdot 68(2)^{\circ}$, Z = 4, space group $P2_1/c$; $D_{\rm c} = 1 \cdot 727$, $D_{\rm m} = 1 \cdot 766$ g cm⁻³; $R = 0 \cdot 0263$, $R_{\rm w} = 0 \cdot 0223$; 2340 unique data $[I > 2\sigma(I); 2\theta < 60^{\circ}]$; $\mu = 13 \cdot 58$ cm⁻¹, $\mu R = 0 \cdot 23$ (absorption corrections neglected). The data were collected on a NONIUS CAD-4 four-circle diffractometer, using Zr-filtered Mo-K_α radiation with a graphite monochromator and the ω -2θ scan mode.[‡]

FIGURE. Molecular structure of complex (5b), with selected bond lengths in Å. The structure of (5a) is similar, with the omission of atoms C(12), C(13), and H(7)—H(12) of the two methyl groups; bond lengths in brackets are for (5a). $P \cdot \cdot N = 2.793(2)$ Å for (5a) and 2.788(2) Å for (5b); $\angle P$ -Rh-N = $80.68(6)^{\circ}$ for (5a) and $79.59(4)^{\circ}$ for (5b).

The molecular structures of (5a) and (5b) (Figure) show that the rhodium atom has a distorted square-planar co-ordination and the Cl and P atoms are in *trans* positions. The Cl-Rh-P angles are not strictly linear (respectively 170.0 and 168.5°), mainly owing to the geometrical constraints of the bidentate ligand. The distances of the Rh, Cl, P, N, C(5), and O(13) atoms from the least-mean squares planes in (5a) and (5b), respectively, are 0.054, 0.062, 0.083, -0.088, 0.013, and -0.088; 0.028, -0.012, -0.013, -0.005, 0.016, and -0.015 Å; accordingly, (5b) is more distorted from planarity than (5a). The bond lengths in both structures are comparable to those in related compounds, e.g. [RhCl(CO)(C_2H_4)(HNEt₂)]⁶ and [RhCl(CO)-(PMe₂Ph)₂].³ The H-Cl distances in (5a) and (5b), 3.206 and 3.217 Å, respectively, indicate the presence of normal Cl···H-N hydrogen bonds in the crystals (normally accepted values in the range 3.16-3.26 Å⁷).

The only marked difference between the two structures is in the dihedral angles between the least-mean squares Rh, Cl, P, N, C(5), O(3), and phenyl planes, 122.4 and 64.2° , respectively. Both eight-membered ligand rings have a distorted crown conformation; the *gem*-dimethyl group does not lead to drastic modifications.

It is noteworthy that the $P \cdots N$ distances (respectively 2·793 and 2·788 Å) are significantly shorter than the sum of the van der Waals radii (3·4 Å) and are even smaller than the values (*ca.* 3·1 Å) reported by Verkade *et al.* for H₃B.P-(OCH₂CH₂)₃N⁸ and S=P(OCH₂CH₂)₃N.⁹ This must be related to the relatively small N-Rh-P angles rather than to a P · · · N interaction as in [HP(OCH₂CH₂)₃N][BF₄]¹⁰ where a dative P \rightarrow N bond (1·986 Å) is observed.

The P^{III}-N^{III} tautomer (2) was also trapped using Cramer's complex [Rh(C₂H₄)₂Cl]₂, which leads to the formation of the yellow crystalline complexes (**6a**) [91% yield; m.p. 230 °C (decomp.); ν_{N-H} 3185, ν_{C-C} 1440, and ν_{Rh-Cl} 290 cm⁻¹; ³¹P n.m.r.:† δ + 165·3 p.p.m., J(P-Rh) 232 Hz§] and (**6b**) [95% yield; m.p. 237 °C (decomp.); ν_{N-H} 3180, ν_{C-C} 1435, and ν_{Rh-Cl} 293 cm⁻¹; ³¹P n.m.r.: δ + 164·8, J(P-Rh) 229·5 Hz], respectively. These compounds were further characterised by their reaction with carbon monoxide which leads to the complexes (**5a**) and (**5b**).

Reactions of an excess of the phosphoranes (1) with $[Rh(CO)_2Cl]_2$ or $[Rh(C_2H_4)_2Cl]_2$ proceed differently. 2:1 Complexes are not observed in the reaction with $[Rh(CO)_2-Cl]_2$, even in solution (i.r.); conversely, $[Rh(C_2H_4)_2Cl]_2$ reacts with 2 equiv. of (1a) and (1b) to give the yellow cationic complexes with two bidentate $P^{IIL}-N^{III}$ ligands (7a) [95% yield; m.p. 210 °C (decomp); ν_{N-H} 3050 cm⁻¹; ³¹P n.m.r.:† δ + 172.7 p.p.m., J(P-Rh) 218.6 Hz§] and (7b) [98% yield; m.p. 234 °C (decomp.); ν_{N-H} 3060 cm⁻¹; ³¹P n.m.r.: δ + 173.9 p.p.m., J(P-Rh) 217.4 Hz§], respectively.

Compounds (5b) and (6b) react with an excess of triphenylphosphine to give respectively *trans*-[RhCl(CO)-(PPh₃)₂ (8) and (1b), and [RhCl(PPh₃)₃] (9) and (1b). Thus the sequence $(1) \rightarrow (5)$, $(6) \rightarrow (8)$, (9) + (1) demonstrates the reversibility of the oxidative addition in reaction (1).

The rhodium(I) complexes (5) and (6), which potentially contain up to three vacant co-ordination sites, and complexes (7) are being examined as homogeneous catalysts. Preliminary results indicate that (6a) and (6b) are hydro-

 $\$ The Me₂SO solution decomposes slowly (even under argon) during the n.m.r. measurement and a new phosphorus species appears with a signal at $\delta + 15.6$ p.p.m. Me₂SO was the only solvent that was satisfactory for these measurements.

[‡] The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

genation and hydroformylation catalysts. However, isomerisation is extensive and high ratios of linear to branched aldehydes in the hydroformylation of hex-1-ene are not observed.

This work was supported by the C.N.R.S. and the Délegation Générale à la Recherche Scientifique et Technique.

(Received, 17th July 1978; Com. 764.)

¹ D. Houalla, J. F. Brazier, M. Sanchez, and R. Wolf, Tetrahedron Letters, 1972, 2969; D. Houalla, T. Mouheich, M. Sanchez, and R. Wolf, Phosphorus, 1975, 5, 229.
² K. Nakamoto, 'Infrared and Raman Spectra of Inorganic Coordination Compounds', Wiley, New York, 3rd edn., 1977.
³ J. J. Bonnet, Y. Jeannin, P. Kalck, A. Maisonnat, and R. Poilblanc, Inorg. Chem., 1975, 14, 743.
⁴ R. G. Pearson, Inorg. Chem., 1973, 12, 713.
⁵ T. B. Rauchfuss and D. M. Roundhill, J. Amer. Chem. Soc., 1974, 96, 3098.
⁶ J. J. Bonnet, Y. Jeannin, A. Maisonnat, P. Kalck, and R. Poilblanc, Compt. rend. (C), 1975, 281, 85.
⁷ International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1968, vol. III, p. 273.
⁸ J. C. Clardy, D. S. Milbrath, and J. G. Verkade, Inorg. Chem., 1977, 16, 2135.
⁹ J. C. Clardy, D. S. Milbrath, and J. G. Verkade, J. Amer. Chem. Soc., 1977, 99, 631.
¹⁰ J. C. Clardy, D. S. Milbrath, J. P. Springer, and J. G. Verkade, J. Amer. Chem. Soc., 1976, 98, 623.