Lithium Phenylthio(trimethylstannyl)cuprate, a New Reagent for Conjugate Addition of the Me₃Sn Group. The Synthesis of β-Trimethylstannyl-αβ-unsaturated Ketones By Edward Piers* and Howard E. Morton (Department of Chemistry, University of British Columbia, 2075 Wesbrook Place, Vancouver, B.C., Canada V6T 1W5) Summary Treatment of a solution of Me₃SnLi in tetrahydrofuran with 1 equiv. of PhSCu affords PhS(Me₃Sn)-CuLi, a new reagent which efficiently transforms β -iodo- enones into β -trimethylstannyl- $\alpha\beta$ -unsaturated ketones, a new class of organotin derivatives. Recent reports clearly indicate that organotin compounds are highly versatile intermediates in organic synthesis.1,2 Recently, we started to investigate the synthesis and chemical reactivity of β -trialkylstannyl- $\alpha\beta$ -unsaturated ketones, a hitherto unknown class of organotin compounds. We report herein (a) the preparation of PhS-(Me₃Sn)CuLi (1), a new reagent which efficiently transfers, in a conjugate sense, the Me₃Sn group to certain αβ-unsaturated carbonyl compounds, and (b) the use of (1) in effecting the smooth conversion of β -iodo-enones into the corresponding β -trimethylstannyl enones. Although reaction of the iodo-enones (2), (3), and (6) with Me₃SnLi in tetrahydrofuran (THF)² resulted in the formation of moderate amounts of the corresponding substitution products (4), (5), and (8), respectively, these transformations were not very reproducible and gave, in addition to the desired products, varying amounts of starting material and/or diaddition products [$\beta\beta$ -bis-(trimethylstannyl)cycloalkanones]. Therefore, the use of other reagents to effect this type of transformation was considered. Addition of 1 equiv. of solid PhSCu³ to a cold $(-20 \, ^{\circ}\text{C})$ solution of Me₃SnLi² in THF resulted in the immediate formation of a deep red solution of the cuprate reagent PhS(Me₃Sn)CuLi (1).† The latter reacted (-20 °C, 15 min; 25 °C, 30 min) smoothly and cleanly with 0.9 equiv. of the iodo-enone (2) to afford, in 86% yield, pure 3-trimethylstannylcyclohex-2-en-1-one (4): $\lambda_{\text{max}}(\text{MeOH})$ 236 nm $(\epsilon \ 12,100); \nu_{\text{max}} \ (\text{film}) \ 1665 \ \text{cm}^{-1}; \ \delta \ (\text{CDCl}_3) \ 0.17 \ (\text{s}, \ 9\text{H}),$ 1.82-2.12 (m, 2H), 2.28-2.56 (m, 4H), and 6.22 (t, 1H, J 2 Hz). \ddagger Similarly, a number of other β -iodo-enones (3), (6), (7), and (10) were converted efficiently into the corresponding β -trimethylstannyl enones (5), (8), (9), and (11), respectively (Table). TABLE. Conjugate addition of Me₃Sn to β-iodo-enones and αβ-unsaturated carbonyl compounds! | | | Yield (%)a | | |----------------|--------------|-------------|-------------| | Substrate | Product | Me₃SnLi | Reagent (1) | | (2)b | (4) | d | 86 | | (3)b | (5) | d | 84 | | (6) c | (8) | d | 83 | | (7) b | (9) | е | 82 | | (10)c | (11) | е | 77 | | (12) | (16) | 93f | 76 | | (13) | (17) | 96f | 91 | | (14) | (18) | 77 f | 69 | | (15) | . (19) | 71 | 67 | | (20) | (23) | 74 | g | | (21) | (24) | 80f | — g | | (22) | (25) | 75 | g | ^a Yields from the present work refer to isolated, purified b E. Piers and I. Nagakura, Synth. Comm., 1975, E. Piers, C. K. Lau, and I. Nagakura, Tetrahedron 1976, 3233. d See text. e Not attempted. Taken material. 1976, 3233. g Starting material recovered in high yield. In terms of its ability to transfer conjugately the Me₃Sn group to $\alpha\beta$ -unsaturated carbonyl systems, reagent (1) was found to be more selective than Me₃SnLi. Thus, the data in the Table show that although (1) readily transferred the Me₃Sn group to the unsaturated ketonic substrates (12)-(14) and to (E)-methyl crotonate (15), it failed to react with the $\beta\beta$ -disubstituted- $\alpha\beta$ -unsaturated esters (20)-(22). On the other hand, Me₃SnLi smoothly converted all these substates [(12)-(14), (15), and (20)-(22)] into the corresponding trimethylstannyl derivatives. Financial support from the National Research Council of Canada and a N.R.C.C. Postgraduate Scholarship (to H.E.M.) are gratefully acknowledged. (Received, 3rd July 1978; Com. 702.) [†] The formation of (Me₃Sn)₂CuLi has been reported: J. Hudec, J.C.S. Perkin I, 1975, 1020. This reagent was used to effect conjugate addition of the Me₃Sn group to two cyclohexenone derivatives, although no yields were given. We have found that (Me₃Sn)₂-CuLi will also convert β-iodo-enones into the corresponding trimethylstannyl derivatives. However, since 2 equiv. of Me₃SnLi are required to prepare 1 equiv. of (Me₃Sn)₂CuLi, it seems clear that PhS(Me₃Sn)CuLi is the preferred reagent. [‡] All new compounds reported herein exhibited expected spectral properties and gave satisfactory elemental analyses and/or molecular weight determinations (high-resolution mass spectrometry). ¹ Reports during 1977 include: R. Bürstinghaus and D. Seebach, Chem. Ber., 1977, 110, 841; B-T. Gröbel and D. Seebach, ibid., p. 852, 867; R. T. Tayler, C. A. Degenhardt, W. P. Melega, and L. A. Paquette, Tetrahedron Letters, 1977, 159; J. Ficini, S. Falou, A-M. Touzin, and J. d'Angelo, ibid., p. 3589; D. Seyferth, K. R. Wursthorn, and R. E. Mammarella, J. Org. Chem., 1977, 42, 3104; R. H. Wollenberg, K. F. Albizati, and R. Peries, J. Amer. Chem. Soc., 1977, 99, 7365; T. Kauffmann, R. Kriegesmann, and A. Woltermann, Angew. Chem. Internat. Edn., 1977, 16, 862. ² W. C. Still, J. Amer. Chem. Soc., 1977, 99, 4836. ³ G. H. Posner, D. J. Brunelle, and L. Sinoway, Synthesis, 1974, 662.