Medium-ring Cyclosilanes from the Reaction of Dimethyldichlorosilane with Lithium

By KOICHI MATSUMURA, LAWRENCE F. BROUGH, and ROBERT WEST* (Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706)

Summary The reaction of Me₂SiCl₂ and Li in tetrahydrofuran at or below 0 °C produces the new cyclosilanes (Me₂Si)₈ and (Me₂Si)₉, as well as the known compounds, (Me₂Si)₅, (Me₂Si)₆, and (Me₂Si)₇.

In a recent communication Laguerre, Dunogues, and Calas¹ reported a high-yield synthesis of dodecamethylcyclohexasilane $(Me_2Si)_6$ from reaction of Me_2SiCl_2 and lithium metal at 0 °C in tetrahydrofuran (THF). We find that $(Me_2Si)_6$ is indeed formed in good yield in this reaction provided excess of lithium metal is present. The results are, however, quite different when exactly 1 equiv. (or a slight deficiency) of lithium is used. In these cases the products include significant amounts of $(Me_2Si)_5$, $(Me_2Si)_7$, $(Me_2Si)_8$, and $(Me_2Si)_9$, as well as $(Me_2Si)_6$, and dimethylsilylene polymer.

In a typical reaction $25.8 \text{ g of Me}_2\text{SiCl}_2$ dissolved in 50 ml of THF was added dropwise to 2.78 g (1.00 equiv.) of lithium granules in 600 ml of THF at 0 °C, during 1 h, under N₂. The mixture was stirred for an additional 23 h at 0 °C and 250 ml of hexane was then added. The precipitate was filtered off, washed with another 300 ml of hexane and then water, dried, concentrated, and passed through a short alumina column. Evaporation gave a

mixture of white crystalline solids which could be separated by g.l.c. or (best) by high pressure liquid chromatography on octadecylsilane-coated silica, using methanol as a solvent. Yields are given in the Table.

TABLE. Yields of cyclosilanes from reaction of $\mathrm{Me}_2\mathrm{SiCl}_2$ and lithium

Compound	%	¹H n.m.r.,δª
$(Me_2Si)_5$	4.9	0.135
(Me ₂ Si) ₆	16.7	0.131
$(Me_2Si)_7$	$7 \cdot 2$	0.127
$(Me_2Si)_8$	15.8	0.144
$(Me_2Si)_9$	3.3	0.163
polymer	45.5	—
^a In CCl ₄ .		

The cyclosilane $(Me_2Si)_7$ is obtained in 1% yield in the usual synthesis of $(Me_2Si)_8$ from Me_2SiCl_2 and Na-K alloy,² $(Me_2Si)_8$ has been detected in trace amounts but never obtained pure,³ and $(Me_2Si)_9$ is entirely new. These compounds were identified by high resolution mass spectroscopy. Like the other permethylcyclopolysilanes, $(Me_2Si)_8$ and $(Me_2Si)_9$ are easily soluble in organic solvents and give sharp singlets in their ¹H n.m.r. spectra (room temperature). The reaction reported here makes these interesting mediumring cyclosilanes easily available for further study.

Stirring with excess of lithium in THF converts the seven-, eight-, and nine-membered rings, as well as most of the polymer, into $(Me_2Si)_6$, accounting for the results published by Laguerre *et al.*¹ The rings which are larger than $(Me_2Si)_6$ are evidently kinetic products, but why they are formed in such large quantity in this reaction is not

clear, nor is it yet known why the amount of $(Me_2Si)_8$ invariably exceeds that of both $(Me_2Si)_7$ and $(Me_2Si)_9$. The soluble fraction from our reactions includes traces of still larger cyclosilane rings; these have also been found in other syntheses, and will be reported elsewhere.⁴

(Received, 14th August 1978; Com. 882.)

¹ M. Laguerre, J. Dunogues, and R. Calas, J.C.S. Chem. Comm., 1978, 272.

² R. West, L. Brough, and W. Wojnowski, Inorg. Synth., 1979, 19, in the press; cf. U. Graf zu Stolberg, Angew. Chem., 1963, 75, 206.

³ E. Carberry and R. West, J. Amer. Chem. Soc., 1969, 91, 5440, 5446.

⁴ R. West, abstracts of papers, Fifth International Symposium on Organosilicon Chemistry, Karlsruhe, Germany, August 1978.